Patents by Inventor Andrew C. Rosinski

Andrew C. Rosinski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220258094
    Abstract: The invention relates to a method and system for improving PSA/VPSA plant energy efficiency during times of reduced production demand and capital efficiency through optimizing feed, vacuum, and centrifugal product compressors to achieve lower energy consumption and lower unit gas product production cost. More specifically, the present invention relates to a new energy efficient PSA/VPSA turn down process and system which employs high speed direct drive centrifugal product compressor to achieve desired production. Significant lower energy consumption can be achieved by employing lower flow, and lower adsorption top pressure in the lower production range.
    Type: Application
    Filed: November 5, 2020
    Publication date: August 18, 2022
    Inventors: Andrew C. Rosinski, Nicholas R. Stuckert, Yang Luo
  • Publication number: 20220233993
    Abstract: The present invention relates to a method and system for improving VPSA plant energy and capital efficiency through optimizing direct drive variable speed centrifugal feed, vacuum, and/or product compressors to achieve lower unit gas product production cost. More specifically, the present invention relates to a new energy efficient VPSA process and system which employs high speed direct drive centrifugal compressors to achieve wider production range. Significant lower energy consumption can be achieved over the plant operation life by employing compressors sized with average ambient and production demand, utilizing direct drive variable high speed centrifugal compressors' speed and operating range to meet the desired production demand. Since majority of the plants tend to run at below peak production most of operating life of the plant. In addition, the smaller size machine offers plant capital savings from the initial investment.
    Type: Application
    Filed: November 5, 2020
    Publication date: July 28, 2022
    Inventors: Andrew C. Rosinski, Nicholas R. Stuckert, Yang Luo
  • Patent number: 10989210
    Abstract: The present invention relates to a method and control system to control the speed of centrifugal compressors operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive, while subsequently operating the vacuum pressure swing process between set limits of highest adsorption and lowest desorption pressure. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: April 27, 2021
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Garrett R. Swindlehurst, Andrew C. Rosinski, Michael S. Manning
  • Publication number: 20190010949
    Abstract: The present invention relates to a method and control system to control the speed of centrifugal compressors operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive, while subsequently operating the vacuum pressure swing process between set limits of highest adsorption and lowest desorption pressure. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 10, 2019
    Inventors: Garrett R. Swindlehurst, Andrew C. Rosinski, Michael S. Manning
  • Patent number: 9702365
    Abstract: The invention relates to a method and control system to control the speed of a centrifugal compressor operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive. The claimed method determines the optimal speed for operation of the compressor along a peak efficiency operating line of a compressor map thereof. Speed of the compressor is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: July 11, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Andrew C. Rosinski, Paul W. Belanger, Michael S. Manning
  • Patent number: 9089810
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 28, 2015
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Paul W. Belanger, Michael S. Manning, Andrew C. Rosinski
  • Patent number: 8968444
    Abstract: The present invention relates generally to a cyclic adsorption process for separating components of a gas stream with at least one adsorber vessel containing at least one adsorber bed undergoing the steps of at least pressurization and depressurization such that the steps are driven by at least one compressor, the compressor undergoing the steps of acceleration and deceleration in association with the steps of pressurization and depressurization. The compressor is operated at or above predetermined speeds which do not generate undesirable frequency pulsations while meeting the requirements of the cyclic adsorption process.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: March 3, 2015
    Assignee: Praxair Technology, Inc.
    Inventors: Pedro Berges, Paul William Belanger, Martin Oehlbeck, Andrew C. Rosinski
  • Publication number: 20140216249
    Abstract: The present invention relates generally to a cyclic adsorption process for separating components of a gas stream with at least one adsorber vessel containing at least one adsorber bed undergoing the steps of at least pressurization and depressurization such that the steps are driven by at least one compressor, the compressor undergoing the steps of acceleration and deceleration in association with the steps of pressurization and depressurization. The compressor is operated at or above predetermined speeds which do not generate undesirable frequency pulsations while meeting the requirements of the cyclic adsorption process.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Inventors: PEDRO BERGES, Paul William Belanger, Martin Oehlbeck, Andrew C. Rosinski
  • Patent number: 8728215
    Abstract: A cyclic adsorption process is provided having pressurization and depressurization steps and driven by one or more centrifugal machines operating under acceleration and deceleration conditions wherein the deceleration rate of the machine is controlled to minimize power consumption and maximize the efficiency of the process. The operating speed of the centrifugal machine during deceleration is matched to the measured pressure ratio conditions so that the centrifugal machine arrives at its minimum operating speed near the point required to begin acceleration.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: May 20, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Michael S. Manning, Andrew C. Rosinski, Paul W. Belanger
  • Publication number: 20140053732
    Abstract: A cyclic adsorption process is provided having pressurization and depressurization steps and driven by one or more centrifugal machines operating under acceleration and deceleration conditions wherein the deceleration rate of the machine is controlled to minimize power consumption and maximize the efficiency of the process. The operating speed of the centrifugal machine during deceleration is matched to the measured pressure ratio conditions so that the centrifugal machine arrives at its minimum operating speed near the point required to begin acceleration.
    Type: Application
    Filed: November 7, 2013
    Publication date: February 27, 2014
    Inventors: MICHAEL S. MANNING, Andrew C. ROSINSKI, Paul W. BELANGER
  • Patent number: 8657918
    Abstract: A cyclic adsorption process is provided having pressurization and depressurization steps and driven by one or more centrifugal machines operating under acceleration and deceleration conditions wherein the deceleration rate of the machine is controlled to minimize power consumption and maximize the efficiency of the process. The operating speed of the centrifugal machine during deceleration is matched to the measured ratio pressure conditions so that the centrifugal machine arrives at its minimum operating speed near the point required to begin acceleration.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 25, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Michael S. Manning, Andrew C. Rosinski, Paul W. Belanger
  • Publication number: 20140041521
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Inventors: Paul W. Belanger, Michael S. Manning, Andrew C. Rosinski
  • Patent number: 8623118
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Paul W. Belanger, Michael S. Manning, Andrew C. Rosinski
  • Publication number: 20130323082
    Abstract: The present invention relates to a method and control system to control the speed of a centrifugal compressor operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventors: Andrew C. Rosinski, Paul W. Belanger, Michael S. Manning
  • Publication number: 20130323014
    Abstract: The present invention relates to a method and control system to control the speed of a centrifugal compressor operating within a vacuum pressure swing adsorption process to avoid an operation at which surge can occur and directly driven by an electric motor that is in turn controlled by a variable frequency drive. In accordance with present invention an optimal speed for operation of the compressor is determined at which the compressor will operate along a peak efficiency operating line of a compressor map thereof. This speed is adjusted by a feed back speed multiplier when the flow or other parameter referable to flow through the compressor is below a minimum and a feed forward multiplier during evacuation and evacuation with purge steps that multiplies the feed back multiplier to increase speed of the compressor and thereby avoid surge.
    Type: Application
    Filed: May 7, 2013
    Publication date: December 5, 2013
    Inventors: Andrew C. Rosinski, Paul W. Belanger, Michael S. Manning
  • Patent number: 8529665
    Abstract: Systems and processes are provided for gas separation using high-speed induction variable-speed motors to accelerate and decelerate centrifugal compressors suitable for use in pressure swing adsorption (PSA) or vacuum pressure swing adsorption (VPSA) processes.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 10, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Michael S. Manning, Andrew C. Rosinski, Gerald Thomas O'Connor, Paul William Belanger
  • Publication number: 20130199369
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Inventors: Paul W. Belanger, Michael S. Manning, Andrew C. Rosinski
  • Publication number: 20130125746
    Abstract: A cyclic adsorption process is provided having pressurization and depressurization steps and driven by one or more centrifugal machines operating under acceleration and deceleration conditions wherein the deceleration rate of the machine is controlled to minimize power consumption and maximize the efficiency of the process. The operating speed of the centrifugal machine during deceleration is matched to the measured ratio pressure conditions so that the centrifugal machine arrives at its minimum operating speed near the point required to begin acceleration.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Inventors: Michael S. Manning, Andrew C. Rosinski, Paul W. Belanger
  • Publication number: 20120325085
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Inventors: PAUL W. BELANGER, MICHAEL S. MANNING, ANDREW C. ROSINSKI
  • Publication number: 20120279391
    Abstract: A vacuum pressure swing adsorption (VPSA) processes and apparatus recover carbon dioxide having a purity of approximately ?80 mole percent from streams containing at least carbon dioxide and nitrogen, and essentially no hydrogen (e.g. flue gas). The feed to the CO2 VPSA is at superatmospheric pressure. The CO2 VPSA unit produces a CO2 product stream, and preferably a high-pressure effluent stream that can be expanded to provide power for compressing the feed stream. The recovered CO2 can be further upgraded, sequestered or used in applications such as enhanced oil recovery.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Inventors: Ravi Kumar, Andrew C. Rosinski