Patents by Inventor Andrew C. Teich

Andrew C. Teich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11378458
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor regulatory limitations on operation of the infrared imaging system and adjust and/or disable operation of the infrared imaging systems accordingly.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 5, 2022
    Assignee: Teledyne FLIR, LLC
    Inventors: Jeffrey D. Frank, Michael Kent, Anna-Karin Lindblom, Lei Bennett, Andrew C. Teich
  • Patent number: 10970556
    Abstract: Various techniques are disclosed for smart surveillance camera systems and methods using thermal imaging to intelligently control illumination and monitoring of a surveillance scene. For example, a smart camera system may include a thermal imager, an IR illuminator, a visible light illuminator, a visible/near IR (NIR) light camera, and a processor. The camera system may capture thermal images of the scene using the thermal imager, and analyze the thermal images to detect a presence and an attribute of an object in the scene. In response to the detection, various light sources may be selectively operated to illuminate the object only when needed or desired, with a suitable type of light source, with a suitable beam angle and width, or in otherwise desirable manner. The visible/NIR light camera may also be selectively operated based on the detection to capture or record surveillance images containing objects of interest.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 6, 2021
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Andrew C. Teich, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 10931934
    Abstract: A watercraft may include a safety system having an imaging component and a control component. The control component may modify the operation of the watercraft based on images from the imaging component. The imaging component may include a thermal imaging component and a non-thermal imaging component. The watercraft may include more than one imaging component disposed around the periphery of the watercraft to monitor a volume surrounding the watercraft for objects in the water such as debris, a person, and/or dock structures. Operating the watercraft based on the images may include operating propulsion and/or steering systems of the watercraft based on a detected object. The control component may operate the propulsion and/or steering systems to disable a propeller when a swimmer is detected, to avoid detected debris, and/or to perform or assist in performing docking maneuvers. The imaging components may include compact thermal imaging modules mounted on or within the hull of the watercraft.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 23, 2021
    Assignee: FLIR Belgium BVBA
    Inventors: Austin A. Richards, Peter A. Reid, Jay E. Robinson, Andrew C. Teich, Christopher Daniel Gatland, Gordon Pope
  • Patent number: 10873203
    Abstract: Techniques are disclosed for facilitating wireless charging of devices. A battery-operated device may include a charging interface. The battery-operated device may further include a magnetic element configured to secure a charging device to the battery-operated device. The battery-operated device may further include a battery configured to be charged by the charging device via power received through the charging interface from the charging device when the charging device is secured to the battery-operated device. The battery-operated device may include a communication circuit configured to provide for transmission information associated with the battery to a user device. Related systems, devices, and methods are also disclosed.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 22, 2020
    Assignee: FLIR Commercial Systems, Inc.
    Inventors: Andrew C. Teich, Ilan L. Gershon
  • Patent number: 10425569
    Abstract: Systems and methods may be provided for operating a camera based the position, orientation, or motion of the camera. A system can include a firearm, a camera mounted to the firearm, a sensor that gathers sensor data associated with at least one of a position, an orientation, or a motion of the firearm, and a processor that receives the sensor data and operates the camera based on the sensor data. The system may be used to capture image data such as video image data in response to a detected ballistic event, to modify the power status of the camera in response to a detected position of the camera, or to operate a display of the camera in response to a non-ballistic motion of the camera.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 24, 2019
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Andrew C. Teich, Patrick B. Richardson, Nicholas Hogasten
  • Patent number: 10321031
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: June 11, 2019
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Andrew C. Teich, Dwight Dumpert, Mark Nussmeier, Eric A. Kurth, Gerald W. Blakeley, III, Michael Fox
  • Patent number: 10250822
    Abstract: Various techniques are disclosed for providing a wearable apparatus having an integrated infrared imaging module. In one example, a wearable apparatus implemented as a self-contained breathing apparatus (SCBA) may include a shield to protect a user from an external environment, one or more infrared imaging modules, a projector, a processor, and a communication module for projecting a user-viewable thermal image onto a surface of the shield. Such infrared imaging modules may be positioned internal to the SCBA for protection from a hazardous external environment. In another example, a wearable apparatus implemented as a welding mask may include one or more infrared imaging modules, a projector, a processor, and a communication module, so as to project a user-viewable thermal image onto a surface of a shield of the welding mask, while at the same time protecting these components and the welder's face from a harsh welding environment.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: April 2, 2019
    Assignee: FLIR Systems, Inc.
    Inventors: William A. Terre, Andrew C. Teich, Giovanni Lepore, Nicholas Hogasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 10244190
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, illumination modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: March 26, 2019
    Assignee: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Barbara Sharp, Theodore R. Hoelter, Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strademar, Mark Nussmeier, Eric A. Kurth
  • Patent number: 10110833
    Abstract: Various techniques are provided for an infrared sensor assembly having a hybrid infrared sensor array. In one example, such a hybrid infrared sensor array may include a plurality of microbolometers and a non-bolometric infrared sensor. The non-bolometric infrared sensor may be a thermopile or other type of infrared sensor different from a bolometer-based sensor. The non-bolometric infrared sensor may be utilized to provide a more accurate and stable temperature reading of an object or area of a scene captured by the array. In some embodiments, the non-bolometric infrared sensor may also be utilized to perform a shutter-less radiometric calibration of the microbolometers of the array. An infrared sensor assembly may include, for example, the hybrid infrared sensor array, as well as a substrate including bond pads and/or appropriate circuits to obtain and/or transmit output signals from the non-bolometric infrared sensor.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 23, 2018
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, William A. Terre, Pierre Boulanger, Jeffrey D. Frank, John H. Distelzweig
  • Publication number: 20180287414
    Abstract: Techniques are disclosed for facilitating wireless charging of devices. A battery-operated device may include a charging interface. The battery-operated device may further include a magnetic element configured to secure a charging device to the battery-operated device. The battery-operated device may further include a battery configured to be charged by the charging device via power received through the charging interface from the charging device when the charging device is secured to the battery-operated device. The battery-operated device may include a communication circuit configured to provide for transmission information associated with the battery to a user device. Related systems, devices, and methods are also disclosed.
    Type: Application
    Filed: February 27, 2018
    Publication date: October 4, 2018
    Inventors: Andrew C. Teich, IIan L. Gershon
  • Patent number: 10080500
    Abstract: Systems and methods are provided for detecting overexposure of skin to ultraviolet light. A system may include a thermal imaging module that captures thermal images of a person's skin. Using the thermal images, the system may determine whether the person's skin has been or is being overexposed to ultraviolet light. The system may be a fixed camera system for monitoring an outdoor area, may be a mobile device having a thermal imaging module within or coupled to the mobile device, or may be part of a tanning system having an ultraviolet light source and a thermal imaging module. The overexposure may be detected in a thermal image based on a temperature of the person's skin, a change in the temperature of the person's skin over time or a temperature difference between portions of the person's skin.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 25, 2018
    Assignee: FLIR Systems, Inc.
    Inventor: Andrew C. Teich
  • Publication number: 20180266886
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor regulatory limitations on operation of the infrared imaging system and adjust and/or disable operation of the infrared imaging systems accordingly.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Jeffrey D. Frank, Michael Kent, Anna-Karin Lindblom, Lei Bennett, Andrew C. Teich
  • Publication number: 20180198960
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Application
    Filed: February 16, 2018
    Publication date: July 12, 2018
    Inventors: Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Andrew C. Teich, Dwight Dumpert, Mark Nussmeier, Eric A. Kurth, Gerald W. Blakeley, III, Michael Fox
  • Patent number: 9986175
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: May 29, 2018
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Andrew C. Teich, Dwight Dumpert, Mark Nussmeier, Eric A. Kurth
  • Patent number: 9973692
    Abstract: In one embodiment, a method for displaying a panoramic view image includes transmitting video data from a plurality of sensors to a data processor and using the processor to stitch the video data from respective ones of the sensors into a single panoramic image. A focus view of the image is defined and the panoramic image is scrolled such that the focus view is centered in the display. A high resolution camera is aimed along a line corresponding to a center of the focus view of the image and an image produced by the camera is stitched into the panoramic image. A mapping function is applied to the image data to compress the data and thereby reduce at least the horizontal resolution of the image in regions adjacent to the side edges thereof.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: May 15, 2018
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Matthew Joseph Szabo, Phillip Vickery, Brian D. O'Dell, Andrew C. Teich, Jeffrey D. Frank
  • Patent number: 9900478
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: February 20, 2018
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Jeffrey D. Frank, Andrew C. Teich, Dwight Dumpert, Gerald W. Blakeley
  • Publication number: 20170374298
    Abstract: Various techniques are provided for an infrared sensor assembly having a hybrid infrared sensor array. In one example, such a hybrid infrared sensor array may include a plurality of microbolometers and a non-bolometric infrared sensor. The non-bolometric infrared sensor may be a thermopile or other type of infrared sensor different from a bolometer-based sensor. The non-bolometric infrared sensor may be utilized to provide a more accurate and stable temperature reading of an object or area of a scene captured by the array. In some embodiments, the non-bolometric infrared sensor may also be utilized to perform a shutter-less radiometric calibration of the microbolometers of the array. An infrared sensor assembly may include, for example, the hybrid infrared sensor array, as well as a substrate including bond pads and/or appropriate circuits to obtain and/or transmit output signals from the non-bolometric infrared sensor.
    Type: Application
    Filed: July 10, 2017
    Publication date: December 28, 2017
    Inventors: Andrew C. Teich, William A. Terre, Pierre Boulanger, Jeffrey D. Frank, John H. Distelzweig
  • Publication number: 20170374261
    Abstract: Various techniques are disclosed for smart surveillance camera systems and methods using thermal imaging to intelligently control illumination and monitoring of a surveillance scene. For example, a smart camera system may include a thermal imager, an IR illuminator, a visible light illuminator, a visible/near IR (NIR) light camera, and a processor. The camera system may capture thermal images of the scene using the thermal imager, and analyze the thermal images to detect a presence and an attribute of an object in the scene. In response to the detection, various light sources may be selectively operated to illuminate the object only when needed or desired, with a suitable type of light source, with a suitable beam angle and width, or in otherwise desirable manner The visible/NIR light camera may also be selectively operated based on the detection to capture or record surveillance images containing objects of interest.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 28, 2017
    Inventors: Andrew C. Teich, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9843743
    Abstract: Various techniques are disclosed for systems and methods using thermal imaging to monitor an infant or other persons that may need observation. For example, an infant monitoring system may include an infrared imaging module, a visible light camera, a processor, a display, a communication module, and a memory. The monitoring system may capture thermal images of a scene including at least a partial view of an infant, using the infrared imaging module enclosed in a portable or mountable housing configured to be positioned for remote monitoring of the infant. Various thermal image processing and analysis operations may be performed on the thermal images to generate monitoring information relating to the infant. The monitoring information may include various alarms that actively provide warnings to caregivers, and user-viewable images of the scene. The monitoring information may be presented at external devices or the display located remotely for convenient viewing by caregivers.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: December 12, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Earl R. Lewis, Andrew C. Teich, Jeffrey D. Frank, Arthur Stout, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar
  • Patent number: 9807319
    Abstract: Wearable systems with thermal imaging capabilities may be provided for detecting the presence and location of persons or animals in an environment surrounding the system in accordance with an embodiment. A wearable system may include a wearable structure such as a helmet with a plurality of imaging modules mounted to the wearable structure. An imaging module may include one or more imaging components such as infrared imaging modules and visible light cameras. Thermal images captured using the infrared imaging modules may be used to detect the presence of a person in the thermal images. The wearable imaging system may include one or more alert components that alert the wearer when a person is detected in the thermal images. The alert components may be used to generate a location-specific alert that alerts the wearer to the location of the detected person. A wearable imaging system may be a multidirectional threat monitoring helmet.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: October 31, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Eric A. Kurth, Barbara Sharp