Patents by Inventor Andrew E. Fisk

Andrew E. Fisk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210285085
    Abstract: A surface geometry for an implantable medical electrode that optimizes the electrical characteristics of the electrode and enables an efficient transfer of signals from the electrode to surrounding bodily tissue. The coating is optimized to increase the double layer capacitance and to lower the after-potential polarization for signals having a pulse width in a pre-determined range by keeping the amplitude of the surface geometry with a desired range.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 16, 2021
    Inventor: Andrew E. Fisk
  • Patent number: 10791945
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 6, 2020
    Assignee: PULSE IP, LLC
    Inventor: Andrew E. Fisk
  • Patent number: 10487385
    Abstract: A titanium based, ceramic reinforced body formed from an alloy having from about 3 wt. % to about 10 wt. % of zirconium, about 10 wt. % to about 25 wt. % of niobium, from about 0.5 wt. % to about 2 wt. % of silicon, and from about 63 wt. % to about 86.5 wt. % of titanium. The alloy has a hexagonal crystal lattice ? phase of from about 20 vol % to about 70 vol %, and a cubic body centered ? crystal lattice phase of from about 30 vol. % to about 80 vol. %. The body has an ultimate tensile strength of about 950 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a zirconium, niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into body. The body may then be formed into a desired shape, for example, a medical implant and optionally annealed.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 26, 2019
    Assignee: Pulse IP, LLC
    Inventors: Andrew E. Fisk, Anatolii Demchyshyn, Leonid Kulak, Mykola Kuzmenko
  • Patent number: 10219715
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization. In addition, the electrode material comprises a biocompatible metal having a minimal or eliminated amount of metal oxides which are detrimental to electrode performance.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: March 5, 2019
    Assignee: Pulse Technologies, Inc.
    Inventor: Andrew E. Fisk
  • Publication number: 20180016669
    Abstract: A titanium based, ceramic reinforced body formed from an alloy having from about 3 wt. % to about 10 wt. % of zirconium, about 10 wt. % to about 25 wt. % of niobium, from about 0.5 wt. % to about 2 wt. % of silicon, and from about 63 wt. % to about 86.5 wt. % of titanium. The alloy has a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol %, and a cubic body centered ? crystal lattice phase of from about 30 vol. % to about 80 vol. %. The body has an ultimate tensile strength of about 950 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a zirconium, niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into body. The body may then be formed into a desired shape, for example, a medical implant and optionally annealed.
    Type: Application
    Filed: July 17, 2017
    Publication date: January 18, 2018
    Inventors: Andrew E. Fisk, Anatolii Demchyshyn, Leonid Kulak, Mykola Kuzmenko
  • Publication number: 20160367159
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization. In addition, the electrode material comprises a biocompatible metal having a minimal or eliminated amount of metal oxides which are detrimental to electrode performance.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 22, 2016
    Applicant: Pulse Technologies, Inc.
    Inventor: Andrew E. Fisk
  • Patent number: 9117680
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 25, 2015
    Assignee: Pulse Technologies Inc.
    Inventor: Andrew E. Fisk
  • Publication number: 20150173635
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: PULSE TECHNOLOGIES, INC.
    Inventor: ANDREW E. FISK
  • Patent number: 9039963
    Abstract: A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice ? phase of from about 20 vol % to about 70 vol %, and a cubic body centered ? crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 26, 2015
    Assignee: Pulse Technologies, Inc.
    Inventors: Andrew E. Fisk, Anatolii Demchyshyn, Mykola Kuzmenko, Sergei Firstov, Leonid Kulak
  • Patent number: 8948881
    Abstract: An implantable electrode comprising a substrate supporting microscopic surface structures such as columnar titanium nitride and further having nanoscopic surface structures on titanium nitride deposited on the exposed surface of the microscopic columnar structures is described. This is done through physical vapor deposition (PVD) and is based upon a relatively abrupt change in the surface mobility of the depositing material with a consequential variation in nucleation site density and surface mobility. At low mobility, there are increased nucleation sites and the condensation features are more numerous and finer. As mobility of the deposited species increases, the nucleation sites in the condensate film become fewer with coarser features.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: February 3, 2015
    Assignee: Greatbatch Ltd.
    Inventor: Andrew E. Fisk
  • Publication number: 20140357973
    Abstract: A biocompatible, implantable electrode for electrically active medical devices. The implantable medical electrode has a surface geometry which optimizes the electrical performance of the electrode, while mitigating the undesirable effects associated with prior art porous surfaces. The electrode has an optimized surface topography for improved electrical performance. Such a electrode is suitable for devices which may be permanently implanted in the human body as stimulation electrodes, such as pacemakers, or as sensors of medical conditions. Such is achieved by the application of ultrafast high energy pulses to the surface of a solid, monolithic electrode material for the purpose of increasing the surface area and thereby decreasing its after-potential polarization.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: PULSE TECHNOLOGIES, INC.
    Inventor: Andrew E. Fisk
  • Publication number: 20140105781
    Abstract: A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % A silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol %, and a cubic body centered 13 crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Pulse Technologies, Inc.
    Inventors: ANDREW E. FISK, Anatolii Demchyshyn, Mykola Kuzmenko, Sergei Firstov, Leonid Kulak
  • Publication number: 20140034484
    Abstract: A method and apparatus for depositing a metal onto a substrate using a cathodic arc plasma source as a source of metal ions. A plasma deposition apparatus has a vacuum chamber; and a conduit within the vacuum chamber having an input end and an output end. A substrate is within the vacuum chamber, positioned to receive a plasma at the output end of the conduit. A cathodic arc plasma source within the vacuum chamber is positioned to inject a composition comprising a mixture of a plasma and electrons into the input end of the conduit toward the output end of the conduit. A magnetic field generator establishes a magnetic field within the conduit a plurality of electrodes located within the magnetic field and an electric field generator establishes an electric field within the conduit. The apparatus reduces or eliminates liquid metal droplets emitted from such a plasma source.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Andrew E. Fisk, Vasyliy I. Maslov, Alexey A. Goncharov
  • Publication number: 20120093707
    Abstract: A surface geometry for an implantable medical electrode that optimizes the electrical characteristics of the electrode and enables an efficient transfer of signals from the electrode to surrounding bodily tissue. The coating is optimized to increase the double layer capacitance and to lower the after-potential polarization for signals having a pulse width in a pre-determined range by keeping the amplitude of the surface geometry with a desired range.
    Type: Application
    Filed: April 15, 2011
    Publication date: April 19, 2012
    Applicant: PULSE TECHNOLOGIES, INC.
    Inventor: Andrew E. Fisk
  • Publication number: 20120094024
    Abstract: A surface geometry for an implantable medical electrode that optimizes the electrical characteristics of the electrode and enables an efficient transfer of signals from the electrode to surrounding bodily tissue. The coating is optimized to increase the double layer capacitance and to lower the after-potential polarization for signals having a pulse width in a pre-determined range by keeping the amplitude of the surface geometry with a desired range.
    Type: Application
    Filed: April 15, 2011
    Publication date: April 19, 2012
    Applicant: PULSE TECHNOLOGIES, INC.
    Inventor: Andrew E. Fisk
  • Patent number: 7812691
    Abstract: A feedthrough filter capacitor assembly is described. The feedthrough filter capacitor assembly comprises an outer ferrule hermetically sealed to an insulator of a dielectric material seated within the ferrule. The insulative material is also hermetically sealed to at least one lead wire. Instead of being made of platinum or platinum/iridium, the lead wire comprises a core of a non-noble metal supporting a functionally graded coating. The metal core has an inner layer of the same the non-noble metal of the core and an outer layer of a noble metal. A gradient transition zone exists between the non-noble metal and the outer noble metal. Consequently, lead wires having all the beneficial attributes of platinum and platinum/iridium wire can be built into hermetic feedthroughs, but at a significantly reduced cost.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: October 12, 2010
    Assignee: Greatbatch Ltd.
    Inventors: Andrew E. Fisk, Richard X. Fu, Christine A. Frysz
  • Publication number: 20080299289
    Abstract: A surface geometry for an implantable medical electrode that optimizes the electrical characteristics of the electrode and enables an efficient transfer of signals from the electrode to surrounding bodily tissue. The coating is optimized to increase the double layer capacitance and to lower the after-potential polarization for signals having a pulse width in a pre-determined range by keeping the amplitude of the surface geometry with a desired range.
    Type: Application
    Filed: October 8, 2007
    Publication date: December 4, 2008
    Inventor: Andrew E. Fisk
  • Publication number: 20080299309
    Abstract: A method of producing a coating for a medical device having high surface area and low porosity. The coating is formed by a PVD process in which a primary metallic component is deposited in the presence of a secondary reactive component in a high energy environment such that surface diffusion and intermixing can occur prior to the solidification of the condensate. The resulting coating consists of a zone 2 microstructure having a [1,1,1] crystal orientation, which provides a surface having well-defined pyramidal-shaped structures formed thereon.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 4, 2008
    Inventor: Andrew E. Fisk
  • Publication number: 20070270927
    Abstract: An implantable electrode comprising a substrate supporting microscopic surface structures such as columnar titanium nitride and further having nanoscopic surface structures on titanium nitride deposited on the exposed surface of the microscopic columnar structures is described. This is done through physical vapor deposition (PVD) and is based upon a relatively abrupt change in the surface mobility of the depositing material with a consequential variation in nucleation site density and surface mobility. At low mobility, there are increased nucleation sites and the condensation features are more numerous and finer. As mobility of the deposited species increases, the nucleation sites in the condensate film become fewer with coarser features.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 22, 2007
    Applicant: Greatbatch Ltd.
    Inventor: Andrew E. Fisk