Patents by Inventor Andrew J. Boudreau

Andrew J. Boudreau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10473692
    Abstract: A method of calibrating a topography metrology instrument using a calibration reference, which includes a substrate and a plurality of bi-layer stacks. Each bi-layer stack includes a plurality of bi-layer steps. At least one bi-layer step of the plurality of bi-layer steps includes two materials. The at least one bi-layer step of the plurality of bi-layer steps includes an etch stop layer and a bulk layer. The calibration reference includes a calibration reference step profile includes a plurality of predetermined bi-layer stack heights. The calibration reference step profile and the predetermined bi-layer stack heights are measured using a topography metrology instrument. The topography metrology instrument is calibrated based on the measured calibration reference step profile and the measured bi-layer stack heights.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: November 12, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Christophersen, Bernard F. Phlips, Andrew J. Boudreau, Michael K. Yetzbacher
  • Patent number: 9915563
    Abstract: A method of optical spectroscopy and a device for use in optical spectroscopy. The device includes a substrate, and a plurality of etalon cavities affixed to or coupled to the substrate. A signal is received from a Fabry-Perot interferometer. The signal is sampled using the device according to a generalized Nyquist-Shannon sampling criterion. The signal is sampled using the device according to a phase differential criterion for wave number resolution. An input spectrum for the signal is reconstructed based on the signal sampled according to the generalized Nyquist-Shannon sampling criterion and the signal sampled according to the phase differential criterion for wave number resolution.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: March 13, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Michael K. Yetzbacher, Christopher W. Miller, Michael J. Deprenger, Andrew J. Boudreau
  • Publication number: 20160161336
    Abstract: A method of optical spectroscopy and a device for use in optical spectroscopy. The device includes a substrate, and a plurality of etalon cavities affixed to or coupled to the substrate. A signal is received from a Fabry-Perot interferometer. The signal is sampled using the device according to a generalized Nyquist-Shannon sampling criterion. The signal is sampled using the device according to a phase differential criterion for wave number resolution. An input spectrum for the signal is reconstructed based on the signal sampled according to the generalized Nyquist-Shannon sampling criterion and the signal sampled according to the phase differential criterion for wave number resolution.
    Type: Application
    Filed: February 18, 2016
    Publication date: June 9, 2016
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: MICHAEL K. YETZBACHER, Christopher W. Miller, Michael J. Deprenger, Andrew J. Boudreau
  • Patent number: 9304040
    Abstract: A method of optical spectroscopy and a device for use in optical spectroscopy. The device includes a substrate, and a plurality of etalon cavities affixed to or coupled to the substrate. A signal is received from a Fabry-Perot interferometer. The signal is sampled using the device according to a generalized Nyquist-Shannon sampling criterion. The signal is sampled using the device according to a phase differential criterion for wave number resolution. An input spectrum for the signal is reconstructed based on the signal sampled according to the generalized Nyquist-Shannon sampling criterion and the signal sampled according to the phase differential criterion for wave number resolution.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: April 5, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Michael K. Yetzbacher, Christopher W. Miller, Michael J. Deprenger, Andrew J. Boudreau
  • Publication number: 20160091703
    Abstract: A method of calibrating a topography metrology instrument using a calibration reference, which includes a substrate and a plurality of bi-layer stacks. Each bi-layer stack includes a plurality of bi-layer steps. At least one bi-layer step of the plurality of bi-layer steps includes two materials. The at least one bi-layer step of the plurality of bi-layer steps includes an etch stop layer and a bulk layer. The calibration reference includes a calibration reference step profile includes a plurality of predetermined bi-layer stack heights. The calibration reference step profile and the predetermined bi-layer stack heights are measured using a topography metrology instrument. The topography metrology instrument is calibrated based on the measured calibration reference step profile and the measured bi-layer stack heights.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 31, 2016
    Inventors: Marc Christophersen, Bernard F. Phlips, Andrew J. Boudreau, Michael K. Yetzbacher
  • Publication number: 20150253189
    Abstract: A method of optical spectroscopy and a device for use in optical spectroscopy. The device includes a substrate, and a plurality of etalon cavities affixed to or coupled to the substrate. A signal is received from a Fabry-Perot interferometer. The signal is sampled using the device according to a generalized Nyquist-Shannon sampling criterion. The signal is sampled using the device according to a phase differential criterion for wave number resolution. An input spectrum for the signal is reconstructed based on the signal sampled according to the generalized Nyquist-Shannon sampling criterion and the signal sampled according to the phase differential criterion for wave number resolution.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 10, 2015
    Inventors: Michael K. Yetzbacher, Christopher W. Miller, Michael J. Deprenger, Andrew J. Boudreau
  • Patent number: 9035408
    Abstract: A ramped etalon cavity structure and a method of fabricating same. A bi-layer stack is deposited on a substrate. The bi-layer stack includes a plurality of bi-layers. Each bi-layer of the plurality of bi-layers includes an etch stop layer and a bulk layer. A three dimensional photoresist structure is formed by using gray-tone lithography. The three dimensional photoresist is plasma etched into the bi-layer stack, thereby generating an etched bi-layer stack. The etched bi-layer stack is chemically etched with a first chemical etchant to generate a multiple-step structure on the substrate, wherein the first chemical etchant stops at the etch stop layer.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 19, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Andrew J. Boudreau, Michael K. Yetzbacher, Marc Christophersen, Bernard F. Phlips
  • Publication number: 20140327099
    Abstract: A ramped etalon cavity structure and a method of fabricating same. A bi-layer stack is deposited on a substrate. The bi-layer stack includes a plurality of bi-layers. Each bi-layer of the plurality of bi-layers includes an etch stop layer and a bulk layer. A three dimensional photoresist structure is formed by using gray-tone lithography. The three dimensional photoresist is plasma etched into the bi-layer stack, thereby generating an etched bi-layer stack. The etched bi-layer stack is chemically etched with a first chemical etchant to generate a multiple-step structure on the substrate, wherein the first chemical etchant stops at the etch stop layer.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 6, 2014
    Inventors: Andrew J. Boudreau, Michael K. Yetzbacher, Marc Christophersen, Bernard F. Phlips