Patents by Inventor Andrew J. Murphy

Andrew J. Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130341
    Abstract: Genetically modified non-human animals that are immunodeficient and comprise xenotransplanted hepatocytes such as human hepatocytes, wherein the genetically modified non-human animal and/or the transplanted hepatocytes are modified to restore interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R) signaling pathway activity or interleukin-6 receptor subunit beta (GP130) signaling pathway activity in the transplanted hepatocytes, are provided. Also provided are methods of assessing the activity of human-liver-targeting reagents in such non-human animals and methods of making animals with a humanized liver (e.g., with reduced steatosis). Also provided are genetically modified non-human animals comprising an inactivated endogenous Rag2 gene, an inactivated endogenous Il2rg gene, an inactivated endogenous Fah gene, a humanized IL6 gene, and optionally an inactivated endogenous Rag1 gene and methods of using and making such animals.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 25, 2024
    Inventors: Joseph Zhe Li, Marisa Carbonaro, Gavin Thurston, Andrew J. Murphy
  • Patent number: 11963521
    Abstract: Non-human animals comprising a human or humanized IL-4 and/or IL-4R? nucleic acid sequence are provided. Non-human animals that comprise a replacement of the endogenous IL-4 gene and/or IL-4R? gene with a human IL-4 gene and/or IL-4R? gene in whole or in part, and methods for making and using the non-human animals, are described. Non-human animals comprising a human or humanized IL-4 gene under control of non-human IL-4 regulatory elements is also provided, including non-human animals that have a replacement of non-human IL-4-encoding sequence with human IL-4-encoding sequence at an endogenous non-human IL-4 locus. Non-human animals comprising a human or humanized IL-4R? gene under control of non-human IL-4R? regulatory elements is also provided, including non-human animals that have a replacement of non-human IL-4R?-encoding sequence with human or humanized IL-4R?-encoding sequence at an endogenous non-human C IL-4R? locus.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: April 23, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Li-Hsien Wang, Yingzi Xue, Andrew J. Murphy, Sean Stevens
  • Patent number: 11964016
    Abstract: The present disclosure provides methods for treating allergy comprising selecting a patient with an allergy and administering a therapeutically effective amount of an IL-4/IL-13 pathway inhibitor (e.g., an anti-IL-4 receptor antibody or antigen-binding fragment thereof) in combination with a therapeutically effective amount of an agent that depletes plasma cells (e.g., an anti-BCMA/anti-CD3 bispecific antibody). In certain embodiments, a plasma cell ablating agent such as an anti-BCMA/anti-CD3 bispecific antibody ablates the plasma cells, including IgE+ plasma cells, while the IL-4/IL-13 pathway inhibitor prevents the generation of new IgE+ plasma cells, thus eliminating allergen-specific IgE in the patient.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: April 23, 2024
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Seblewongel Asrat, Andre Limnander, Jamie Orengo, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20240124613
    Abstract: Methods for making, identifying, isolating and/or making binding proteins that contain an immunoglobulin light chain variable domain, including a somatically hypermutated light chain variable domain, fused with a heavy chain constant region, are provided. Exemplary binding proteins specific to small molecules are also provided.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 18, 2024
    Inventors: Robert Babb, Ashique Rafique, Tammy T. Huang, Ergang Shi, Lynn Macdonald, Andrew J. Murphy
  • Patent number: 11950578
    Abstract: Mice are provided that comprise a reduction or deletion of ADAM6 activity from an endogenous ADAM6 locus, or that lack an endogenous locus encoding a mouse ADAM6 protein, wherein the mice comprise a sequence encoding an ADAM6 or ortholog or homolog or fragment thereof that is functional in a male mouse. In one embodiment, the sequence is an ectopic ADAM6 sequence or a sequence that confers upon a male mouse the ability to generate offspring by mating. Mice and cells with genetically modified immunoglobulin heavy chain loci that comprise an ectopic nucleotide sequence encoding a mouse ADAM6 or functional fragment or homolog or ortholog thereof are also provided.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 9, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Sean Stevens, Andrew J. Murphy, Margaret Karow
  • Patent number: 11944130
    Abstract: A vaporizer device includes various modular components. The vaporizer device includes a first subassembly. The first subassembly includes a cartridge connector that secures a vaporizer cartridge to the vaporizer device and includes at least two receptacle contacts that electrically communicate with the vaporizer cartridge. The vaporizer device includes a second subassembly. The second subassembly includes a skeleton defining a rigid tray that retains at least a power source. The vaporizer device also includes a third subassembly. The third subassembly includes a plurality of charging contacts that supply power to the power source, and an end cap that encloses an end of the vaporizer device.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: April 2, 2024
    Assignee: JUUL Labs, Inc.
    Inventors: Samuel C. Anderson, Wei-Ling Chang, Brandon Cheung, Steven Christensen, Joseph Chun, Joseph R. Fisher, Jr., Nicholas J. Hatton, Kevin Lomeli, James Monsees, Andrew L. Murphy, Claire O'Malley, John R. Pelochino, Hugh Pham, Vipul V. Rahane, Matthew J. Taschner, Val Valentine, Kenneth Wong
  • Publication number: 20240099279
    Abstract: Disclosed herein are non-human animals (e.g., rodents, e.g., mice or rats) genetically engineered to express a humanized or human T cell receptor (TCR) comprising a variable domain encoded by (a) at least one human TCR variable region ? gene segment and a (human) TCR ? constant region gene sequence and/or (b) or at least one human TCR variable region ? gene segment and a (human) TCR ? constant region gene sequence. Also provided are embryos, tissues, and cells expressing the same. Methods for making a genetically engineered animal that expresses the humanized or human ? and/or ? TCR are also provided. Methods for using the genetically engineered animals that mount a substantially humanized T cell immune response for developing human therapeutics are also provided.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 28, 2024
    Inventors: Naxin Tu, John McWhirter, Chunguang Guo, Cagan Gurer, Vera Voronina, Lynn Macdonald, Andrew J. Murphy
  • Publication number: 20240099278
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Application
    Filed: August 21, 2023
    Publication date: March 28, 2024
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Publication number: 20240101594
    Abstract: Described herein are protein steroid conjugates that are useful, for example, for the target-specific delivery of glucocorticoids (GCs) to cells.
    Type: Application
    Filed: July 28, 2023
    Publication date: March 28, 2024
    Inventors: Amy HAN, Andrew J. MURPHY, William OLSON
  • Patent number: 11937587
    Abstract: Non-human animals, expressing humanized CD3 proteins are provided. Non-human animals, e.g., rodents, genetically modified to comprise in their genome humanized CD3 proteins are also provided. Additionally, provided are methods and compositions of making such non-human animals, as well as methods of using said non-human animals.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: March 26, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Kara L. Olson, Eric Smith, Ka-Man Venus Lai, Andrew J. Murphy, Gavin Thurston, Dayong Guo
  • Publication number: 20240091301
    Abstract: The present invention provides apelin receptor (APLNR) modulators that bind to APLNR and methods of using the same. The invention includes APLNR modulators such as antibodies, or antigen-binding fragments thereof, which inhibit or attenuate APLNR-mediated signaling. The invention includes APLNR modulators such as antibodies, or antibody fusion proteins thereof, that activate APLNR-mediated signaling. According to certain embodiments of the invention, the antibodies or antigen-binding fragments or antibody fusion proteins are fully human antibodies that bind to human APLNR with high affinity. The APLNR modulators of the invention are useful for the treatment of diseases and disorders associated with APLNR signaling and/or APLNR cellular expression, such as cardiovascular diseases, angiogenesis diseases, metabolic diseases and fibrotic diseases.
    Type: Application
    Filed: March 23, 2023
    Publication date: March 21, 2024
    Inventors: Panayiotis Stevis, Andrew J. Murphy, Jesper Gromada, Yonaton Ray, Jee H. Kim, Ivan B. Lobov
  • Patent number: 11932859
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: March 19, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20240082380
    Abstract: The present invention provides methods for enhancing the efficacy and/or safety of a vaccine. In certain embodiments, the invention provides methods to increase or potentiate the immune response to a vaccine in a subject in need thereof. The methods of the present invention comprise administering to a subject in need thereof an interleukin-4 receptor (IL-4R) antagonist such as an anti-IL-4R antibody in combination with said vaccine. In certain embodiments, the methods of the present invention are used to afford enhanced protection to an infectious disease such as whooping cough.
    Type: Application
    Filed: July 5, 2023
    Publication date: March 14, 2024
    Inventors: Lisa Purcell, Neil Graham, Andrew J. Murphy, Robert Evans
  • Publication number: 20240083986
    Abstract: Provided herein are antibodies that bind Fagales allergens, Fagales related allergens, birch pollen, or Bet v 1, compositions comprising the antibodies, nucleic acids encoding the antibodies, and methods of using the antibodies. According to certain embodiments, the antibodies are fully human monoclonal antibodies that bind to Bet v 1. The antibodies are useful for binding Bet v 1 in vivo, thus preventing binding of the allergen to pre-formed IgE on the surface of mast cells or basophils. In doing so, the antibodies act to prevent the release of histamine and other inflammatory mediators from mast cells and/or basophils, thus ameliorating the untoward response to the Fagales allergens in sensitized individuals.
    Type: Application
    Filed: August 9, 2023
    Publication date: March 14, 2024
    Inventors: Jamie M. Orengo, Andrew J. Murphy, Ashok T. Badithe, Vishal Kamat, Yashu Liu
  • Patent number: 11926661
    Abstract: The present disclosure provides antibodies and antigen-binding fragments thereof that bind to human artemin. Methods for using anti-artemin antibodies and antigen-binding fragments are also provided.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: March 12, 2024
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Susan D. Croll, Lynn MacDonald, Andrew J. Murphy
  • Publication number: 20240074414
    Abstract: Genetically modified non-human animals expressing human EPO from the animal genome are provided. Also provided are methods for making non-human animals expressing human EPO from the non-human animal genome, and methods for using non-human animals expressing human EPO from the non-human animal genome. These animals and methods find many uses in the art, including, for example, in modeling human erythropoiesis and erythrocyte function; in modeling human pathogen infection of erythrocytes; in in vivo screens for agents that modulate erythropoiesis and/or erythrocyte function, e.g. in a healthy or a diseased state; in in vivo screens for agents that are toxic to erythrocytes or erythrocyte progenitors; in in vivo screens for agents that prevent against, mitigate, or reverse the toxic effects of toxic agents on erythrocytes or erythrocyte progenitors; in in vivo screens of erythrocytes or erythrocyte progenitors from an individual to predict the responsiveness of an individual to a disease therapy.
    Type: Application
    Filed: August 10, 2023
    Publication date: March 7, 2024
    Inventors: Andrew J. Murphy, Sean Stevens, Richard Flavell, Markus Gabriel Manz, Liang Shan
  • Publication number: 20240065238
    Abstract: Mice, embryos, cells, and tissues having a restricted immunoglobulin heavy chain locus and an ectopic sequence encoding one or more ADAM6 proteins are provided. In various embodiments, mice are described that have humanized endogenous immunoglobulin heavy chain loci and are capable of expressing an ADAM6 protein or ortholog or homolog or functional fragment thereof that is functional in a male mouse. Mice, embryos, cells, and tissues having an immunoglobulin heavy chain locus characterized by a single human VH gene segment, a plurality of human DH gene segments and a plurality of human JH gene segments and capable expressing an ADAM6 protein or ortholog or homolog or functional fragment thereof are also provided.
    Type: Application
    Filed: April 20, 2023
    Publication date: February 29, 2024
    Inventors: Lynn Macdonald, Sean Stevens, Andrew J. Murphy, Margaret Karow, John McWhirter
  • Publication number: 20240065239
    Abstract: Provided herein are methods and compositions related to mice that express human or humanized Foot receptors (FcaR) from an FcaR locus positioned in the mouse leukocyte receptor complex (LRC). In certain embodiments, such mice are useful for in vivo testing of therapeutic agents comprising a human IgA Fc (e.g., the testing of the pharmacokinetic and/or pharmacodynamic properties of such therapeutic agents and dosing regimens). Also provided herein are methods of using such mice, cells from such mice, methods of making such mice, and ES cells comprising the same genetic modifications as such mice. Provided herein are methods and compositions related to mice that express human or humanized Foot receptors (FcaR) from an FcaR locus positioned in the mouse leukocyte receptor complex (LRC). In certain embodiments, such mice are useful for in vivo testing of therapeutic agents comprising a human IgA Fc (e.g.
    Type: Application
    Filed: December 15, 2021
    Publication date: February 29, 2024
    Inventors: John McWhirter, Naxin Tu, Andrew J. Murphy, Lynn MacDonald
  • Publication number: 20240074000
    Abstract: A system includes a current source circuit; a system power input; and load switching circuitry coupling the current source circuit and the system power input to an output configured to couple to a vaporizer heating element. The current source circuit, the system power input, and the load switching circuitry form part of an integrated circuit. Related apparatus, systems, techniques, and articles are also described.
    Type: Application
    Filed: July 31, 2023
    Publication date: February 29, 2024
    Inventors: Joseph R. Fisher, JR., Nicholas J. Hatton, Andrew L. Murphy, Hugh Pham, Val Valentine
  • Patent number: 11912767
    Abstract: The present invention provides multispecific antibodies that bind to EGFR and CD28 (EGFR×CD28) as well as anti-EGFR antibodies. Such antibodies may be combined with a further therapeutic agent such as an anti-PD1 antibody. Methods for treating cancers (e.g., EGFR-expressing cancer) by administering the antibodies (e.g., and combinations thereof with anti-PD1) are also provided. The EGFR×CD28 antibodies of the present invention embody a tumor-targeted immunotherapeutic modality combined with PD-1 inhibition. These bispecific antibodies bind a tumor-specific antigen (TSA) (EGFR) with one arm and the co-stimulatory receptor, CD28, on T-cells with the other arm. Combination therapy with PD-1 inhibitors specifically potentiated intra-tumoral T cell activation, promoting an effector memory-like T cell phenotype without systemic cytokine secretion in a variety of syngeneic and human tumor xenograft models.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: February 27, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Dimitris Skokos, Andrew J. Murphy, George D. Yancopoulos, Chia-Yang Lin, Lauric Haber