Patents by Inventor Andrew Kersey

Andrew Kersey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10420490
    Abstract: Provided according to embodiments of the invention are systems for monitoring a physiological state of an individual that include a PPG sensor, which optionally includes an auxiliary physiological sensor integrated with or connected thereto; a first signal processing device in electronic communication with the PPG sensor, whereby the PPG sensor transmits PPG signals to the first signal processing device; and a second signal processing device that detects at least a portion of the signals transmitted by the PPG sensor to the first signal processing device, at least a portion of signals transmitted by the auxiliary physiological sensor, or both. Related methods are also provided herein.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: September 24, 2019
    Assignee: XHALE ASSURANCE, INC.
    Inventors: David Rich, Andrew Kersey, Sean Cohen, Richard Melker
  • Patent number: 10390715
    Abstract: Provided according to embodiments of the invention are photoplethysmography (PPG) sensors, systems and accessories, and methods of making and using the same. In some embodiments of the invention, the PPG sensors include a clip body that includes a first end portion and a second end portion; a flex circuit attached or adjacent to the clip body, and an elastomeric sleeve that envelops (1) at least part of the first end portion and at least part of the flex circuit attached or adjacent thereto; or (2) at least part of the second end portion and at least part of the flex circuit attached or adjacent thereto.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 27, 2019
    Assignees: University of Florida Research Foundation, Incorporated, Xhale Assurance, Inc.
    Inventors: David Rich, Richard J. Melker, Andrew Kersey, Matt Culen
  • Patent number: 9724002
    Abstract: Provided according to embodiments of the invention are photoplethysmography (PPG) sensors, systems and methods of using the same. In some embodiments of the invention, methods of obtaining a photoplethysmography (PPG) signals include securing a PPG sensor onto a nasal columella of an individual; and obtaining a PPG signal from the PPG sensor.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 8, 2017
    Inventors: David Rich, Andrew Kersey
  • Publication number: 20150073233
    Abstract: Provided according to embodiments of the invention are systems for monitoring a physiological state of an individual that include a PPG sensor, which optionally includes an auxiliary physiological sensor integrated with or connected thereto; a first signal processing device in electronic communication with the PPG sensor, whereby the PPG sensor transmits PPG signals to the first signal processing device; and a second signal processing device that detects at least a portion of the signals transmitted by the PPG sensor to the first signal processing device, at least a portion of signals transmitted by the auxiliary physiological sensor, or both. Related methods are also provided herein.
    Type: Application
    Filed: June 20, 2014
    Publication date: March 12, 2015
    Applicant: Xhale, Inc.
    Inventors: David Rich, Andrew Kersey, Sean Cohen, Richard Melker
  • Publication number: 20150018651
    Abstract: A near-infrared spectrophotometric system (e.g., a cerebral oximeter) includes a sensor portion and a monitor portion. The monitor portion includes a processor that runs an algorithm which utilizes the amount of detected light to determine the value of the oxygen concentration (e.g., the absolute level of oxygen concentration). The monitor portion also includes a visual display that displays the determined oxygen concentration values in various formats. The monitor portion may also include an audible device (e.g., a speaker), that provides audible indications of the determined oxygen concentration values. Various visual indicators may include, for example, color-coded graphs of the determined oxygenation values to alert the system user, for example, whether one hemisphere of the brain, or one or more regions of the brain, is in danger of adverse and potentially permanent damage. Also, data may be pre-processed by selecting the most clinically concerning sensor value (e.g.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 15, 2015
    Inventors: Paul Benni, Bo Chen, Andrew Kersey
  • Publication number: 20140343382
    Abstract: Provided according to embodiments of the present invention are pulse oximetry systems that include a pulse oximeter sensor, and a probe identification circuit that includes a thermistor. The probe identification circuit may be part of or associated with the pulse oximeter sensor.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicant: XHALE, INC.
    Inventors: Andrew Kersey, David Rich, Dana Rich
  • Publication number: 20140275930
    Abstract: Provided according to embodiments of the invention are photoplethysmography (PPG) sensors, systems and methods of using the same. In some embodiments of the invention, methods of obtaining a photoplethysmography (PPG) signals include securing a PPG sensor onto a nasal columella of an individual; and obtaining a PPG signal from the PPG sensor.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: XHALE, INC.
    Inventors: David Rich, Andrew Kersey
  • Patent number: 8761851
    Abstract: A near-infrared spectrophotometric system (e.g., a cerebral oximeter) includes a sensor portion and a monitor portion. The monitor portion includes a processor that runs an algorithm which utilizes the amount of detected light to determine the value of the oxygen concentration (e.g., the absolute level of oxygen concentration). The monitor portion also includes a visual display that displays the determined oxygen concentration values in various formats. The monitor portion may also include an audible device (e.g., a speaker), that provides audible indications of the determined oxygen concentration values. Various visual indicators may include, for example, color-coded graphs of the determined oxygenation values to alert the system user, for example, whether one hemisphere of the brain, or one or more regions of the brain, is in danger of adverse and potentially permanent damage. Also, data may be pre-processed by selecting the most clinically concerning sensor value (e.g.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: June 24, 2014
    Assignee: CAS Medical Systems, Inc.
    Inventors: Paul B. Benni, Bo Chen, Andrew Kersey
  • Publication number: 20140005557
    Abstract: Provided according to embodiments of the invention are photoplethysmography (PPG) sensors, systems and accessories, and methods of making and using the same. In some embodiments of the invention, the PPG sensors include a clip body that includes a first end portion and a second end portion; a flex circuit attached or adjacent to the clip body, and an elastomeric sleeve that envelops (1) at least part of the first end portion and at least part of the flex circuit attached or adjacent thereto; or (2) at least part of the second end portion and at least part of the flex circuit attached or adjacent thereto.
    Type: Application
    Filed: October 12, 2012
    Publication date: January 2, 2014
    Inventors: David Rich, Richard J. Melker, Andrew Kersey, Matt Culen
  • Patent number: 8077312
    Abstract: A method and apparatus for calibrating an NIRS system which includes a sensor portion and for evaluating an NIRS system for proper functioning is provided that includes an enclosure with at least two windows disposed in a wall of the enclosure. The windows allow the light source and one or more detectors of an NIRS system sensor to interface with the enclosure. One window is dedicated to the light source while each light detector has a window dedicated thereto. Thus, the enclosure includes a number of windows equal to the number of light detectors in the NIRS system sensor plus one. The inner surface of the wall(s) of the enclosure is of a light-absorbing color; e.g., black. A diffuse reflectance member of a light-reflecting color, e.g., white, is disposed in the enclosure spaced apart from the surface with the windows disposed therein.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: December 13, 2011
    Assignee: CAS Medical Systems, Inc.
    Inventors: Paul B. Benni, Andrew Kersey, Krystian Gieryk
  • Publication number: 20080300474
    Abstract: A near-infrared spectrophotometric system (e.g., a cerebral oximeter) includes a sensor portion and a monitor portion. The monitor portion includes a processor that runs an algorithm which utilizes the amount of detected light to determine the value of the oxygen concentration (e.g., the absolute level of oxygen concentration). The monitor portion also includes a visual display that displays the determined oxygen concentration values in various formats. The monitor portion may also include an audible device (e.g., a speaker), that provides audible indications of the determined oxygen concentration values. Various visual indicators may include, for example, color-coded graphs of the determined oxygenation values to alert the system user, for example, whether one hemisphere of the brain, or one or more regions of the brain, is in danger of adverse and potentially permanent damage. Also, data may be pre-processed by selecting the most clinically concerning sensor value (e.g.
    Type: Application
    Filed: December 6, 2006
    Publication date: December 4, 2008
    Applicant: CAS MEDICAL SYSTEMS, INC.
    Inventors: Paul B. Benni, Bo Chen, Andrew Kersey
  • Publication number: 20080285029
    Abstract: A method and apparatus for calibrating an NIRS system which includes a sensor portion (42) and for evaluating an NIRS system for proper functioning is provided that includes an enclosure (40) with at least two windows (16,18) disposed in a wall of the enclosure (40) The windows (16,18) allow the light source (22) and one or more detectors (24) of an NIRS system sensor (42) to interface with the enclosure (40) One window (16) is dedicated to the light source (22) while each light detector (24) has a window (18) dedicate thereto Thus, the enclosure (40) includes a number of windows (16,18) equal to the number of light detectors (24) in the NIRS system sensor plus one The inner surface of the wall(s) of the enclosure (40 is of a light-absorbing color, e.g., black A diffuse reflectance member (28) of a light-reflecting color, e.g.
    Type: Application
    Filed: November 3, 2006
    Publication date: November 20, 2008
    Applicant: CAS Medical Systems, Inc.
    Inventors: Paul B. Benni, Andrew Kersey, Krystian Gieryk
  • Patent number: D748274
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 26, 2016
    Inventors: David Rich, Andrew Kersey, Matt Culen