Patents by Inventor Andrew Lohbihler

Andrew Lohbihler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10222176
    Abstract: The present invention comprises a transmitter unit having at least one infrared (IR) transmitter, a target screen, a plurality of photodiode sensors disposed in a spaced apart relationship about the target screen, and receiver circuitry connecting the photodiode sensors together. The transmitter unit continuously emits an IR signal, which is detected by the photodiode sensors. The receiver circuitry then triangulate the position of the transmitter unit by calculating the differential distances between each of the photodiode sensors and the transmitter unit. The receiver circuitry is able to dynamically update the position of the transmitter unit because the transmitter unit continuously emits an IR signal. The transmitter unit is able to simulate a “shot” in a number of different ways, including updating the packet update rate or altering the data packet preamble. No return signal is necessary for the transmitter unit to confirm the “shot.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 5, 2019
    Inventor: Andrew Lohbihler
  • Patent number: 9311793
    Abstract: Disclosed is a motion detection system for use in entryways or areas wherein a user may wish to monitor activity, comprising a wireless emitter and detector or system thereof. The emitters utilize a plurality of infrared or other media sensors to emit outgoing signals detecting an object blocking a pathway prescribed by an area between the emitter and a predetermined barrier. Reflections of the outgoing signals are received by the detector and an internal processor calculates an action based on the received input. An automatic calibration is conducted to match the physical reflectivity of the area to minimize false alarms, while the direction of a passing object is determined by a calculated reflection strength gradient and/or time-delay in signal reflectivity. The emitters may be programmed to emit certain alerts based on their input or send signals to a base station, which is communicated to via wireless transmission.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 12, 2016
    Inventor: Andrew Lohbihler
  • Publication number: 20140349254
    Abstract: The present invention comprises a transmitter unit having at least one infrared (IR) transmitter, a target screen, a plurality of photodiode sensors disposed in a spaced apart relationship about the target screen, and receiver circuitry connecting the photodiode sensors together. The transmitter unit continuously emits an IR signal, which is detected by the photodiode sensors. The receiver circuitry then triangulate the position of the transmitter unit by calculating the differential distances between each of the photodiode sensors and the transmitter unit. The receiver circuitry is able to dynamically update the position of the transmitter unit because the transmitter unit continuously emits an IR signal. The transmitter unit is able to simulate a “shot” in a number of different ways, including updating the packet update rate or altering the data packet preamble. No return signal is necessary for the transmitter unit to confirm the “shot.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Inventor: Andrew Lohbihler
  • Publication number: 20130099922
    Abstract: Disclosed is a motion detection system for use in entryways or areas wherein a user may wish to monitor activity, comprising a wireless emitter and detector or system thereof. The emitters utilize a plurality of infrared or other media sensors to emit outgoing signals detecting an object blocking a pathway prescribed by an area between the emitter and a predetermined barrier. Reflections of the outgoing signals are received by the detector and an internal processor calculates an action based on the received input. An automatic calibration is conducted to match the physical reflectivity of the area to minimize false alarms, while the direction of a passing object is determined by a calculated reflection strength gradient and/or time-delay in signal reflectivity. The emitters may be programmed to emit certain alerts based on their input or send signals to a base station, which is communicated to via wireless transmission.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 25, 2013
    Inventor: Andrew Lohbihler
  • Publication number: 20100234044
    Abstract: Embodiments of the present invention include one or more wireless transmitting devices and an array of receiver units for receiving wireless communications from the transmitting devices. The transmitter devices and receiver units can be arranged in one, two or three dimensional configurations. Signals are transmitted from the devices for identification and accurate location determination. Spread spectrum techniques can be used, such as DSSS, FHSS, THSS, and pseudo-noise (PN) coding schemes, or combinations thereof. The transmitting devices can generate one or a plurality of data signals that are orthogonal-code modulated, to be decoded by the receiver units and a processor associated therewith. A plurality of transmitter signals can be received, identified, located, and data demodulated substantially simultaneously using embodiments of the invention. The combined use of array processing methods and diversity schemes can be used to reduce the effects of signal multi-path and occlusion.
    Type: Application
    Filed: April 6, 2010
    Publication date: September 16, 2010
    Applicant: XYZ INTERACTIVE TECHNOLOGIES INC.
    Inventor: Andrew LOHBIHLER
  • Publication number: 20080192025
    Abstract: A method and apparatus used in conjunction with a combined display/sensing screen (DSS) includes a transparent outer layer overtop of the sensing screen. A plurality of IR emitters inject IR light edgewise into the outer layer, where it undergoes total internal reflection. Touch input devices have reflective pads on them with a high index of refraction which alters the critical angle in the contact area so that some of the IR is refracted out of the surface and then reflected back through the outer layer to the DSS, where the IR sensor array will detect the position of the reflected light and register a signal. The sensor array signals may be combined into a sensor image to detect touch input devices and movement thereof.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 14, 2008
    Inventors: Denny Jaeger, Andrew Lohbihler
  • Publication number: 20080084271
    Abstract: A wireless data input system that has one or more continuous user input devices on a sensing pad or the like, each device connected to a respective individually addressable RFID tags. Each device operates to enable its corresponding individually addressable RFID tag to transmit a unique PN code or the like that is recognized by the RFID reader to identify the respective device and decode the data therefrom.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 10, 2008
    Inventors: Denny Jaeger, Andrew Lohbihler
  • Publication number: 20080042993
    Abstract: A sensor pad input system for use with an electronic display screen includes a transparent sensor pad overlaying the display, and at least one tactile input device removably secured to the sensor pad. Each input device emits an IR beam transmitted by the sensor pad to an IR sensor at the edge of the sensor pad. Each input device emits a unique PN code which enables identification of the device and detection of the device setting and changes in the setting. Each input device includes a light receptor directed toward the display screen to derive location data therefrom. Input devices include knob, fader, trackball, and joystick embodiments.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 21, 2008
    Inventors: Denny Jaeger, Andrew Lohbihler
  • Publication number: 20080029316
    Abstract: A system for using IR light emitted from a wireless input device for the purpose of locating and tracking the device on a transparent sensor pad associated with an electronic display screen. The sensor pad incorporates embedded photo-sensors at the edges of the pad for detecting, identifying, and locating the input device. The input device may be powered by EM field, or light emitted by the display screen.
    Type: Application
    Filed: August 6, 2007
    Publication date: February 7, 2008
    Inventors: Denny Jaeger, Andrew Lohbihler
  • Patent number: 7084860
    Abstract: A touch sensing apparatus for receiving input from one or more touch stimulating devices employs a direct sequence spread spectrum (DSSS) signaling arrangement to transmit signals from the touch stimulating devices for identification and location determination. Active devices are powered by an EM field and generate a touch stimulating signal that is spread spectrum encoded for identification, and signal pickups in a propagation layer receive the touch stimulation signals which are identified by the DSSS encoding and located using received signal strength (RSS) techniques. Semi-active devices are powered by an EM field and receive code instructions to generate specific spread spectrum signals and generate a touch-stimulating signal. Touch stimulating devices are either tethered or tether-free, and powered by batteries or EM fields.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: August 1, 2006
    Assignee: Intertact Corporation
    Inventors: Denny Jaeger, Andrew Lohbihler
  • Publication number: 20060166681
    Abstract: Embodiments of the present invention include one or more wireless transmitting devices and an array of receiver units for receiving wireless communications from the transmitting devices. The transmitter devices and receiver units can be arranged in one, two or three dimensional configurations. Signals are transmitted from the devices for identification and accurate location determination. Spread spectrum techniques can be used, such as DSSS, FHSS, THSS, and pseudo-noise (PN) coding schemes, or combinations thereof. The transmitting devices can generate one or a plurality of data signals that are orthogonal-code modulated, to be decoded by the receiver units and a processor associated therewith. A plurality of transmitter signals can be received, identified, located, and data demodulated substantially simultaneously using embodiments of the invention. The combined use of array processing methods and diversity schemes can be used to reduce the effects of signal multi-path and occlusion.
    Type: Application
    Filed: August 8, 2003
    Publication date: July 27, 2006
    Inventor: Andrew Lohbihler
  • Publication number: 20040056849
    Abstract: A method for powering one or more touch input devices on a touch screen employs an EM standing wave propagating through a conductive surface layer of the touch screen to deliver power to the input devices without resorting to tether wires for any purpose. The input devices emit CDMA signals that are received by corner sensors in contact with the conductive layer and processed to detect, identify and locate the input devices. The EM standing wave is also used as a signaling medium to transmit multiple CDMA coded signals, and a synchronizing signal sent through the EM standing wave may control the timing of coded signals transmitted from the touch screen input devices to manage multiple device signals.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 25, 2004
    Inventors: Andrew Lohbihler, Denny Jaeger