Patents by Inventor Andrew P. Edwards

Andrew P. Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8785975
    Abstract: A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Isik C. Kizilyalli
  • Patent number: 8778788
    Abstract: A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial structure including a first III-nitride epitaxial layer coupled to the first side of the III-nitride substrate and a plurality of III-nitride regions of a second conductivity type. The plurality of III-nitride regions have at least one III-nitride epitaxial region of the first conductivity type between each of the plurality of III-nitride regions. The semiconductor structure further includes a first metallic structure electrically coupled to one or more of the plurality of III-nitride regions and the at least one III-nitride epitaxial region. A Schottky contact is created between the first metallic structure and the at least one III-nitride epitaxial region.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 15, 2014
    Assignee: Avogy, Inc.
    Inventors: Andrew P. Edwards, Hui Nie, Isik C. Kizilyalli, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20140191242
    Abstract: A vertical JFET includes a GaN substrate comprising a drain of the JFET and a plurality of patterned epitaxial layers coupled to the GaN substrate. A distal epitaxial layer comprises a first part of a source channel and adjacent patterned epitaxial layers are separated by a gap having a predetermined distance. The vertical JFET also includes a plurality of regrown epitaxial layers coupled to the distal epitaxial layer and disposed in at least a portion of the gap. A proximal regrown epitaxial layer comprises a second part of the source channel. The vertical JFET further includes a source contact passing through portions of a distal regrown epitaxial layer and in electrical contact with the source channel, a gate contact in electrical contact with a distal regrown epitaxial layer, and a drain contact in electrical contact with the GaN substrate.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: AVOGY, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Isik Kizilyalli, David P. Bour, Thomas R. Prunty, Quentin Diduck
  • Publication number: 20140191241
    Abstract: An array of GaN-based vertical JFETs includes a GaN substrate comprising a drain of one or more of the JFETs and one or more epitaxial layers coupled to the GaN substrate. The array also includes a plurality of hexagonal cells coupled to the one or more epitaxial layers and extending in a direction normal to the GaN substrate. Sidewalls of the plurality of hexagonal cells are substantially aligned with respect to crystal planes of the GaN substrate. The array further includes a plurality of channel regions, each having a portion adjacent a sidewall of the plurality of hexagonal cells, a plurality of gate regions of one or more of the JFETs, each electrically coupled to one or more of the plurality of channel regions, and a plurality of source regions of one or more of the JFETs electrically coupled to one or more of the plurality of channel regions.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: AVOGY, Inc.
    Inventors: Andrew P. Edwards, Hui Nie, Donald R. Disney, Isik Kizilyalli
  • Publication number: 20140159051
    Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 12, 2014
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20140162416
    Abstract: A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial layer of the first conductivity type coupled to the first surface of the III-nitride substrate, and a first metallic structure electrically coupled to the second surface of the III-nitride substrate. The semiconductor structure further includes an AlGaN epitaxial layer coupled to the III-nitride epitaxial layer of the first conductivity type, and a III-nitride epitaxial structure of a second conductivity type coupled to the AlGaN epitaxial layer. The III-nitride epitaxial structure comprises at least one edge termination structure.
    Type: Application
    Filed: July 1, 2013
    Publication date: June 12, 2014
    Inventors: Linda Romano, Andrew P. Edwards, Richard J. Brown, David P. Bour, Hui Nie, Isik C. Kizilyalli, Thomas R. Prunty, Mahdan Raj
  • Patent number: 8749015
    Abstract: A method for fabricating an edge termination structure includes providing a substrate having a first surface and a second surface and a first conductivity type, forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate, and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The method also includes implanting ions into a first region of the second GaN epitaxial layer to electrically isolate a second region of the second GaN epitaxial layer from a third region of the second GaN epitaxial layer. The method further includes forming an active device coupled to the second region of the second GaN epitaxial layer and forming the edge termination structure coupled to the third region of the second GaN epitaxial layer.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: June 10, 2014
    Assignee: Avogy, Inc.
    Inventors: Donald R. Disney, Andrew P. Edwards, Hui Nie, Richard J. Brown, Isik C. Kizilyalli, David P. Bour, Linda Romano, Thomas R. Prunty
  • Publication number: 20140145201
    Abstract: A semiconductor structure includes a III-nitride substrate and a first III-nitride epitaxial layer of a first conductivity type coupled to the III-nitride substrate. The semiconductor structure also includes a first III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial layer and a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure. The semiconductor structure further includes a second III-nitride epitaxial layer coupled to the first III-nitride epitaxial structure. The second III-nitride epitaxial layer is of a second conductivity type and is not electrically connected to the second III-nitride epitaxial structure.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: AVOGY, INC.
    Inventors: Hui Nie, Andrew P. Edwards, David P. Bour, Isik C. Kizilyalli, Richard J. Brown, Thomas R. Prunty
  • Patent number: 8716716
    Abstract: A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Richard J. Brown, Isik C. Kizilyalli
  • Publication number: 20140051236
    Abstract: A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: AVOGY, INC.
    Inventors: Madhan Raj, Richard J. Brown, Thomas R. Prunty, David P. Bour, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano
  • Publication number: 20140048902
    Abstract: An MPS diode includes a III-nitride substrate characterized by a first conductivity type and a first dopant concentration and having a first side and a second side. The MPS diode also includes a III-nitride epitaxial structure comprising a first III-nitride epitaxial layer coupled to the first side of the substrate, wherein a region of the first III-nitride epitaxial layer comprises an array of protrusions. The III-nitride epitaxial structure also includes a plurality of III-nitride regions of a second conductivity type, each partially disposed between adjacent protrusions. Each of the plurality of III-nitride regions of the second conductivity type comprises a first section laterally positioned between adjacent protrusions and a second section extending in a direction normal to the first side of the substrate. The MPS diode further includes a first metallic structure electrically coupled to one or more of the protrusions and to one or more of the second sections.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: AVOGY , INC.
    Inventors: Madhan M. Raj, Brian Alvarez, David P. Bour, Andrew P. Edward, Hui Nie, Isik C. Kizilyalli
  • Patent number: 8643134
    Abstract: A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 4, 2014
    Assignee: Avogy, Inc.
    Inventors: Madhan Raj, Richard J. Brown, Thomas R. Prunty, David P. Bour, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano
  • Publication number: 20130341677
    Abstract: A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: AVOGY, Inc.
    Inventors: Hui Nie, Donald R. Disney, Andrew P. Edwards, Isik C. Kizilyalli
  • Patent number: 8592938
    Abstract: A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Avogy, Inc.
    Inventors: Madhan Raj, Richard J. Brown, Thomas R. Prunty, David P. Bour, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano
  • Patent number: 8502234
    Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: August 6, 2013
    Assignee: Agovy, Inc.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20130161635
    Abstract: A semiconductor structure includes a III-nitride substrate and a drift region coupled to the III-nitride substrate along a growth direction. The semiconductor substrate also includes a channel region coupled to the drift region. The channel region is defined by a channel sidewall disposed substantially along the growth direction. The semiconductor substrate further includes a gate region disposed laterally with respect to the channel region.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Richard J. Brown, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, David P. Bour
  • Publication number: 20130161633
    Abstract: A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Hui Nie, Andrew P. Edwards, Donald R. Disney, Richard J. Brown, Isik C. Kizilyalli
  • Publication number: 20130161780
    Abstract: A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Richard J. Brown, Donald R. Disney
  • Publication number: 20130126886
    Abstract: A method of fabricating a Schottky diode using gallium nitride (GaN) materials includes providing an n-type GaN substrate having a first surface and a second surface. The second surface opposes the first surface. The method also includes forming an ohmic metal contact electrically coupled to the first surface of the n-type GaN substrate and forming an n-type GaN epitaxial layer coupled to the second surface of the n-type GaN substrate. The method further includes forming an n-type aluminum gallium nitride (AlGaN) surface layer coupled to the n-type GaN epitaxial layer and forming a Schottky contact electrically coupled to the n-type AlGaN surface layer.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Richard J. Brown, Thomas R. Prunty, David P. Bour, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, Madhan Raj
  • Publication number: 20130126884
    Abstract: A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial layer of the first conductivity type coupled to the first surface of the III-nitride substrate, and a first metallic structure electrically coupled to the second surface of the III-nitride substrate. The semiconductor structure further includes an AlGaN epitaxial layer coupled to the III-nitride epitaxial layer of the first conductivity type, and a III-nitride epitaxial structure of a second conductivity type coupled to the AlGaN epitaxial layer. The III-nitride epitaxial structure comprises at least one edge termination structure.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Linda Romano, Andrew P. Edwards, Richard J. Brown, David P. Bour, Hui Nie, Isik C. Kizilyalli, Thomas R. Prunty, Mahdan Raj