Patents by Inventor Andrew P. Homyk

Andrew P. Homyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618477
    Abstract: Methods and devices for sequencing nucleic acids are disclosed herein. Devices are also provided herein for measuring DNA with nano-pores sized to allow DNA to pass through the nano-pore. The capacitance can be measured for the DNA molecule passing through the nano-pore. The capacitance measurements can be correlated to determine the sequence of base pairs passing through the nano-pore to sequence the DNA.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: April 11, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Sameer Walavalkar, Axel Scherer, Thomas A. Tombrello, Aditya Rajagopal, Andrew P. Homyk, Erika Garcia
  • Patent number: 9525312
    Abstract: The present disclosure describes a method for optically powering transducers and related transducers with a photovoltaic collector. An optical fiber power delivery method and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 20, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk
  • Publication number: 20160280537
    Abstract: Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
    Type: Application
    Filed: June 9, 2016
    Publication date: September 29, 2016
    Inventors: Michael D. HENRY, Andrew P. HOMYK, Axel SCHERER, Thomas A. TOMBRELLO, Sameer WALAVALKAR
  • Patent number: 9406823
    Abstract: Methods for fabricating self-aligned heterostructures and semiconductor arrangements using silicon nanowires are described.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: August 2, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrew P. Homyk, Michael D. Henry, Axel Scherer, Sameer Walavalkar
  • Patent number: 9390936
    Abstract: Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: July 12, 2016
    Inventors: Michael D. Henry, Andrew P. Homyk, Axel Scherer, Thomas A. Tombrello, Sameer Walavalkar
  • Patent number: 9243277
    Abstract: The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 26, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 9234872
    Abstract: Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 12, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrew P. Homyk, Michael D. Henry, Axel Scherer, Sameer Walavalkar
  • Publication number: 20150380989
    Abstract: The present disclosure describes a method for optically powering transducers and related transducers with a photovoltaic collector. An optical fiber power delivery method and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 31, 2015
    Inventors: Axel SCHERER, Aditya RAJAGOPAL, Seheon KIM, Andrew P. HOMYK
  • Publication number: 20150299757
    Abstract: The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
    Type: Application
    Filed: June 29, 2015
    Publication date: October 22, 2015
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Michael D. HENRY, Sameer WALAVALKAR, Thomas A. TOMBRELLO, Andrew P. HOMYK
  • Patent number: 9154235
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: October 6, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk
  • Publication number: 20150268191
    Abstract: Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
    Type: Application
    Filed: March 30, 2015
    Publication date: September 24, 2015
    Inventors: Andrew P. HOMYK, Michael D. HENRY, Axel SCHERER, Sameer WALAVALKAR
  • Patent number: 9099436
    Abstract: The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: August 4, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 9018684
    Abstract: Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 28, 2015
    Assignee: California Institute of Technology
    Inventors: Andrew P. Homyk, Michael D. Henry, Axel Scherer, Sameer Walavalkar
  • Patent number: 9005548
    Abstract: Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: April 14, 2015
    Assignee: California Institute of Technology
    Inventors: Michael D. Henry, Andrew P. Homyk, Axel Scherer, Thomas A. Tombrello, Sameer Walavalkar
  • Publication number: 20150050746
    Abstract: Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Inventors: Michael D. HENRY, Andrew P. HOMYK, Axel SCHERER, Thomas A. TOMBRELLO, Sameer WALAVALKAR
  • Publication number: 20140357974
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Michael D. HENRY, Sameer WALAVALKAR, Thomas A. TOMBRELLO, Andrew P. HOMYK
  • Publication number: 20140341591
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Application
    Filed: June 17, 2014
    Publication date: November 20, 2014
    Inventors: Axel SCHERER, Aditya RAJAGOPAL, Seheon KIM, Andrew P. HOMYK
  • Publication number: 20140319459
    Abstract: Methods for fabricating self-aligned heterostructures and semiconductor arrangements using silicon nanowires are described.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Andrew P. HOMYK, Michael D. HENRY, Axel SCHERER, Sameer WALAVALKAR
  • Patent number: 8841712
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 23, 2014
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 8809093
    Abstract: Methods for fabricating self-aligned heterostructures and semiconductor arrangements using silicon nanowires are described.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 19, 2014
    Assignee: California Institute of Technology
    Inventors: Andrew P. Homyk, Michael D. Henry, Axel Scherer, Sameer Walavalkar