Patents by Inventor Andrew Paul Cook

Andrew Paul Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10620233
    Abstract: A piezoelectric transducer for measuring a force includes a base element; a pre-loading element; at least one effective main seismic mass aggregation of pre-loaded parts capable of producing the force when being accelerated; a main piezoelectric ceramic element including a first piezoelectric ceramic; at least one compensation seismic mass aggregation of pre-loaded parts capable of producing a compensation force when being accelerated; a compensation piezoelectric ceramic element including a second piezoelectric ceramic. The first piezoelectric ceramic has a thermal sensitivity shift smaller than the second piezoelectric ceramic. The main piezoelectric ceramic element is oriented with respect to the force to be measured and the compensation piezoelectric ceramic element is oriented with respect to the compensation force such that the main electric charge and the compensation electric charge are opposite in polarity.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 14, 2020
    Assignee: KISTLER HOLDING AG
    Inventor: Andrew Paul Cook
  • Publication number: 20170370962
    Abstract: A piezoelectric transducer for measuring a force includes a base element; a pre-loading element; at least one effective main seismic mass aggregation of pre-loaded parts capable of producing the force when being accelerated; a main piezoelectric ceramic element including a first piezoelectric ceramic; at least one compensation seismic mass aggregation of pre-loaded parts capable of producing a compensation force when being accelerated; a compensation piezoelectric ceramic element including a second piezoelectric ceramic. The first piezoelectric ceramic has a thermal sensitivity shift smaller than the second piezoelectric ceramic. The main piezoelectric ceramic element is oriented with respect to the force to be measured and the compensation piezoelectric ceramic element is oriented with respect to the compensation force such that the main electric charge and the compensation electric charge are opposite in polarity.
    Type: Application
    Filed: May 8, 2017
    Publication date: December 28, 2017
    Inventor: ANDREW PAUL COOK
  • Patent number: 7997133
    Abstract: An acceleration sensor for measuring an acceleration comprises a housing including a measuring-plate, which has a first surface. The measuring plate has a second surface in parallel with and opposite to the first surface. A post is bonded via a post-bonding-face to the first surface. A temperature-compensating-element for compensating a temperature-effect caused by a temperature acting on the measuring-plate, is bonded via an element-bonding-face to the second surface of the measuring-plate. In addition, a sensor as described above is in a measuring device.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: August 16, 2011
    Assignee: Kistler Holding AG
    Inventors: Andrew Paul Cook, Norton G. Kinsley
  • Patent number: 7525238
    Abstract: The invention describes a sensor comprising an element package 2 including piezoelectric elements with an upper area 6 and a lower area 7. A preload sleeve 3 surrounds the said upper area 6 of the said element package 2, while an insulation sleeve 1 sits between the upper area 6 of the said element package 2 and the said preload sleeve 3. An outer housing 4 partially or fully surrounds the said preload sleeve 3 and the lower area 7 of the said element package 2. An insulation part 5 sits between the said lower area 7 of the element package 2 and the said outer housing 4, whereas the said upper area 6 of the said element package 2, the said insulation sleeve 1 and the said preload sleeve 3 have conical shapes and have conforming surfaces. Due to the conical size of the insulation sleeve 1, the load during a shock measurement is distributed on a larger surface area resulting in a reduced compression of the said insulation sleeve. Thereby, the maximum range of the sensor is increased.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: April 28, 2009
    Assignee: Kistler Holding AG
    Inventors: John M. Kubler, Andrew Paul Cook
  • Publication number: 20080245149
    Abstract: An acceleration sensor for measuring an acceleration comprises a housing including a measuring-plate, which has a first surface. The measuring plate has a second surface in parallel with and opposite to the first surface. A post is bonded via a post-bonding-face to the first surface. A temperature-compensating-element for compensating a temperature-effect caused by a temperature acting on the measuring-plate, is bonded via an element-bonding-face to the second surface of the measuring-plate. In addition, a sensor as described above is in a measuring device.
    Type: Application
    Filed: October 11, 2006
    Publication date: October 9, 2008
    Applicant: Kistler Holding AG
    Inventors: Andrew Paul Cook, Norton G. Kinsley
  • Publication number: 20080203854
    Abstract: The invention describes a sensor comprising an element package 2 including piezoelectric elements with an upper area 6 and a lower area 7. A preload sleeve 3 surrounds the said upper area 6 of the said element package 2, while an insulation sleeve 1 sits between the upper area 6 of the said element package 2 and the said preload sleeve 3. An outer housing 4 partially or fully surrounds the said preload sleeve 3 and the lower area 7 of the said element package 2. An insulation part 5 sits between the said lower area 7 of the element package 2 and the said outer housing 4, whereas the said upper area 6 of the said element package 2, the said insulation sleeve 1 and the said preload sleeve 3 have conical shapes and have conforming surfaces. Due to the conical size of the insulation sleeve 1, the load during a shock measurement is distributed on a larger surface area resulting in a reduced compression of the said insulation sleeve. Thereby, the maximum range of the sensor is increased.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 28, 2008
    Applicant: KISTLER HOLDING AG
    Inventors: John M. Kubler, Andrew Paul Cook