Patents by Inventor Andrew SOLOVYOV

Andrew SOLOVYOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9441072
    Abstract: The invention provides complexes in which ligands (e.g., calixarene-related compounds) are coordinated to a metal colloid, e.g. a gold colloid. In exemplary embodiments, two or more ligands complexed to the metal colloid are larger than the metal colloid, thus providing an accessible metal center. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: September 13, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Jeong-Myeong Ha
  • Patent number: 9295983
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 29, 2016
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20150238949
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: December 23, 2014
    Publication date: August 27, 2015
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Patent number: 8969607
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 3, 2015
    Assignees: The Regents of the University of California, Chevron U.S.A., Inc.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Patent number: 8808655
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99% of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia
  • Patent number: 8703083
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99 % of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: April 22, 2014
    Assignees: The Regents of the University of California, Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia, Paul Timothy Fanson
  • Publication number: 20130018199
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: October 22, 2010
    Publication date: January 17, 2013
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20120316347
    Abstract: The invention provides complexes in which ligands (e.g., calixarene-related compounds) are coordinated to a metal colloid, e.g. a gold colloid. In exemplary embodiments, two or more ligands complexed to the metal colloid are larger than the metal colloid, thus providing an accessible metal center. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: November 5, 2010
    Publication date: December 13, 2012
    Applicant: The Regents of the University of California
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Jeong-Myeong Ha
  • Publication number: 20090308252
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99 % of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Application
    Filed: July 28, 2009
    Publication date: December 17, 2009
    Applicants: The Regents of the University of California, Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Andrew SOLOVYOV, Alexander KATZ, Enrique IGLESIA, Paul Timothy FANSON
  • Publication number: 20090028768
    Abstract: Immobilized nitronyl nitroxide active sites on the surface of a porous inorganic oxide support act as efficient and rapid oxidants for NO, reacting with >99% of the NO under flow conditions through a packed bed; and, in a parallel configuration with nitroxyl radical active sites, act to remove >99% of both NO and NO2 from a gas mixture, with >95% of the active sites participating in NOx trapping.
    Type: Application
    Filed: February 12, 2008
    Publication date: January 29, 2009
    Applicant: The Regents of the University of California
    Inventors: Andrew Solovyov, Alexander Katz, Enrique Iglesia