Patents by Inventor Andrew V. Le

Andrew V. Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240173034
    Abstract: Systems, apparatuses, and methods disclosed herein may be directed to clips for medical implementation, including clips for a portion of a heart. The clips may be configured to close the portion of the heart, to reduce blood flow therethrough as well as passage of clots or other undesired materials. In examples, the clips may be configured to close the left atrial appendage (LAA). The closure of the LAA may reduce the possibility of stroke or other maladies stemming from fluid flow with the LAA. In examples, the clips may be positioned exterior of the LAA, to extend over an outer surface of the LAA for closure.
    Type: Application
    Filed: February 2, 2024
    Publication date: May 30, 2024
    Inventors: Harvey H. Chen, Manouchehr A. Miraki, Rodolfo Rodriguez, Erin E. Castioni, Maria L. Saravia, Stephen Epstein, Luke Anthony Zanetti, Ashley Nicolette Hinga (formerly Keffer), Stephen Cournane, Felino V. Cortez, JR., Nancy Ling Chung, Daniel Yasevac, Andrew Ryan, Slava Arabagi, Jaime L. Baluyot, Sooji Van Echten, Da-Yu Chang, John Richard Carpenter, Sai Prasad Uppalapati, Pui Tong Ho, Jason Thai Le, Adam J. Yestrepsky
  • Publication number: 20240112027
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for performing neural architecture search for machine learning models. In one aspect, a method comprises receiving training data for a machine learning, generating a plurality of candidate neural networks for performing the machine learning task, wherein each candidate neural network comprises a plurality of instances of a layer block composed of a plurality of layers, for each candidate neural network, selecting a respective type for each of the plurality of layers from a set of layer types that comprises, training the candidate neural network and evaluating performance scores for the trained candidate neural networks as applied to the machine learning task, and determining a final neural network for performing the machine learning task based at least on the performance scores for the candidate neural networks.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 4, 2024
    Inventors: Yanqi Zhou, Yanping Huang, Yifeng Lu, Andrew M. Dai, Siamak Shakeri, Zhifeng Chen, James Laudon, Quoc V. Le, Da Huang, Nan Du, David Richard So, Daiyi Peng, Yingwei Cui, Jeffrey Adgate Dean, Chang Lan
  • Patent number: 10883932
    Abstract: An FI having an in-situ particle detector and a method for particle detection therein are provided. In one aspect, the FI includes a fan, a substrate support, a particle detector, and an exhaust outlet. The fan, substrate support, and particle detector are arranged such that, in operation, the fan directs air towards the exhaust outlet and over a substrate on the substrate support to create laminar flow. The particle detector, positioned downstream from the substrate support and upstream from the exhaust outlet, analyzes the air and detects particle concentration before the particles are exhausted. The collected particle detection data may be combined with data from other sensors in the FI and used to identify the source of particle contamination. The particle detector may also be incorporated into other system components, including but not limited to, a load-lock or buffer chamber to detect particle concentration therein.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xuesong Lu, Andrew V. Le, Fa Ji, Jang Seok Oh, Patrick L. Smith, Shawyon Jafari, Ralph Peter Antonio
  • Patent number: 10655223
    Abstract: Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: May 19, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xuesong Lu, Andrew V. Le, Jang Seok Oh
  • Patent number: 10580626
    Abstract: Embodiments described herein generally relate to a plasma processing chamber and a detection apparatus for arcing events. In one embodiment, an arcing detection apparatus is disclosed herein. The arcing detection apparatus comprises a probe, a detection circuit, and a data log system. The probe positioned partially exposed to an interior volume of a plasma processing chamber. The detection circuit is configured to receive an analog signal from the probe and output an output signal scaling events present in the analog signal. The data log system is communicatively coupled to receive the output signal from the detection circuit. The data log system is configured to track arcing events occurring in the interior volume.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lin Zhang, Rongping Wang, Jian J. Chen, Michael S. Cox, Andrew V. Le
  • Publication number: 20190323960
    Abstract: An FI having an in-situ particle detector and a method for particle detection therein are provided. In one aspect, the FI includes a fan, a substrate support, a particle detector, and an exhaust outlet. The fan, substrate support, and particle detector are arranged such that, in operation, the fan directs air towards the exhaust outlet and over a substrate on the substrate support to create laminar flow. The particle detector, positioned downstream from the substrate support and upstream from the exhaust outlet, analyzes the air and detects particle concentration before the particles are exhausted. The collected particle detection data may be combined with data from other sensors in the FI and used to identify the source of particle contamination. The particle detector may also be incorporated into other system components, including but not limited to, a load-lock or buffer chamber to detect particle concentration therein.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 24, 2019
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Fa JI, Jang Seok OH, Patrick L. SMITH, Shawyon JAFARI, Ralph Peter ANTONIO
  • Patent number: 10365216
    Abstract: An FI having an in-situ particle detector and a method for particle detection therein are provided. In one aspect, the FI includes a fan, a substrate support, a particle detector, and an exhaust outlet. The fan, substrate support, and particle detector are arranged such that, in operation, the fan directs air towards the exhaust outlet and over a substrate on the substrate support to create laminar flow. The particle detector, positioned downstream from the substrate support and upstream from the exhaust outlet, analyzes the air and detects particle concentration before the particles are exhausted. The collected particle detection data may be combined with data from other sensors in the FI and used to identify the source of particle contamination. The particle detector may also be incorporated into other system components, including but not limited to, a load-lock or buffer chamber to detect particle concentration therein.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: July 30, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xuesong Lu, Andrew V. Le, Fa Ji, Jang Seok Oh, Patrick L. Smith, Shawyon Jafari, Ralph Peter Antonio
  • Publication number: 20190218492
    Abstract: One aspect of the invention provides a device for quantifying and controlling oxygen concentration within a bioreactor containing a cell-containing sample that is actively consuming oxygen. The device includes: a bioreactor vessel adapted and configured to receive a cell-containing sample; a perfusion loop adapted and configured to circulate a perfusate from within the bioreactor vessel and back into the bioreactor vessel, the perfusion loop including a first pump; a gas exchanger including one or more gas exchange sources adapted and configured to add or remove gases from the perfusate; a sensor within the bioreactor adapted and configured to measure the dissolved oxygen concentration in the perfusate; and a controller programmed to control one or more parameters selected from the group consisting of the specified flow rate of the perfusate through the gas exchanger and the rate of gas exchange through the one or more gas exchange sources.
    Type: Application
    Filed: September 11, 2017
    Publication date: July 18, 2019
    Applicant: YALE UNIVERSITY
    Inventors: Alexander J. ENGLER, Laura E. NIKLASON, Andrew V. LE
  • Patent number: 10330612
    Abstract: An apparatus for integrating metrology and method for using the same are disclosed. The apparatus includes a multi-chamber system having a transfer chamber, a deposition chamber, an etch chamber and a metrology chamber, and a robot configured to transfer a substrate between the deposition chamber or etch chamber and the metrology chamber.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: June 25, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Shuran Sheng, Andrew V. Le
  • Publication number: 20190169743
    Abstract: Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Jang Seok OH
  • Patent number: 10208380
    Abstract: Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lin Zhang, Xuesong Lu, Andrew V. Le, Jang Seok Oh
  • Patent number: 10002745
    Abstract: Embodiments of the disclosure include methods for in-situ chamber cleaning efficiency enhancement process for a plasma processing chamber utilized for a semiconductor substrate fabrication process. In one embodiment, a method for performing a plasma treatment process after cleaning a plasma process includes performing a cleaning process in a plasma processing chamber in absent of a substrate disposed thereon, subsequently supplying a plasma treatment gas mixture including at least a hydrogen containing gas and/or an oxygen containing gas into the plasma processing chamber, applying a RF source power to the processing chamber to form a plasma from the plasma treatment gas mixture, and plasma treating an interior surface of the processing chamber.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 19, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xuesong Lu, Andrew V. Le, Jang Seok Oh, Xinhai Han
  • Publication number: 20180156727
    Abstract: An FI having an in-situ particle detector and a method for particle detection therein are provided. In one aspect, the FI includes a fan, a substrate support, a particle detector, and an exhaust outlet. The fan, substrate support, and particle detector are arranged such that, in operation, the fan directs air towards the exhaust outlet and over a substrate on the substrate support to create laminar flow. The particle detector, positioned downstream from the substrate support and upstream from the exhaust outlet, analyzes the air and detects particle concentration before the particles are exhausted. The collected particle detection data may be combined with data from other sensors in the FI and used to identify the source of particle contamination. The particle detector may also be incorporated into other system components, including but not limited to, a load-lock or buffer chamber to detect particle concentration therein.
    Type: Application
    Filed: October 25, 2017
    Publication date: June 7, 2018
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Fa JI, Jang Seok OH, Patrick L. SMITH, Shawyon JAFARI, Ralph Peter ANTONIO
  • Publication number: 20170323768
    Abstract: Embodiments of the disclosure include methods for in-situ chamber cleaning efficiency enhancement process for a plasma processing chamber utilized for a semiconductor substrate fabrication process. In one embodiment, a method for performing a plasma treatment process after cleaning a plasma process includes performing a cleaning process in a plasma processing chamber in absent of a substrate disposed thereon, subsequently supplying a plasma treatment gas mixture including at least a hydrogen containing gas and/or an oxygen containing gas into the plasma processing chamber, applying a RF source power to the processing chamber to form a plasma from the plasma treatment gas mixture, and plasma treating an interior surface of the processing chamber.
    Type: Application
    Filed: May 3, 2016
    Publication date: November 9, 2017
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Jang Seok OH, Xinhai HAN
  • Publication number: 20170159176
    Abstract: Embodiments described herein relate to apparatus and coating methods to reduce chamber arcing, for example, in HDP-CVD, PECVD, PE-ALD and Etch chambers. The apparatus include a ring shaped gas distributor used for in-situ deposition of coating materials, and a process chamber including the same. The ring shaped gas distributor includes a ring shaped body having at least one gas entrance port disposed on a first side thereof and a plurality of gas distribution ports disposed on a first surface of the ring shaped body. The plurality of gas distribution ports are arranged in a plurality of evenly distributed rows. The plurality of gas distribution ports in a first row of the plurality of evenly distributed rows is adapted to direct gas at an exit angle different from an exit angle of the plurality of gas distribution ports in a second row of the plurality of evenly distributed rows.
    Type: Application
    Filed: October 26, 2016
    Publication date: June 8, 2017
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Jang Seok OH
  • Publication number: 20170162370
    Abstract: Embodiments described herein generally relate to a plasma processing chamber and a detection apparatus for arcing events. In one embodiment, an arcing detection apparatus is disclosed herein. The arcing detection apparatus comprises a probe, a detection circuit, and a data log system. The probe positioned partially exposed to an interior volume of a plasma processing chamber. The detection circuit is configured to receive an analog signal from the probe and output an output signal scaling events present in the analog signal. The data log system is communicatively coupled to receive the output signal from the detection circuit. The data log system is configured to track arcing events occurring in the interior volume.
    Type: Application
    Filed: November 10, 2016
    Publication date: June 8, 2017
    Inventors: Lin ZHANG, Rongping WANG, Jian J. CHEN, Michael S. COX, Andrew V. LE
  • Publication number: 20170114462
    Abstract: Embodiments of the present disclosure generally relate to a cluster tool for processing semiconductor substrates. In one embodiment, a cluster tool includes a plurality of process chambers connected to a transfer chamber and each process chamber may simultaneously process four or more substrates. In order to reduce cost, each process chamber includes a substrate support for supporting four or more substrates, single showerhead disposed over the substrate support, and a single radio frequency power source electrically coupled to the showerhead. The showerhead may include a first surface facing the substrate support and a second surface opposite the first surface. A plurality of gas passages may be formed in the showerhead extending from the first surface to the second surface. Process uniformity is improved by increasing the density of the gas passages from the center of the showerhead to the edge of the showerhead.
    Type: Application
    Filed: October 11, 2016
    Publication date: April 27, 2017
    Inventors: Lin ZHANG, Xuesong LU, Andrew V. LE, Zheng YUAN, Jang Seok OH, Joseph Jamil FARAH, Rongping WANG
  • Publication number: 20160077025
    Abstract: An apparatus for integrating metrology and method for using the same are disclosed. The apparatus includes a multi-chamber system having a transfer chamber, a deposition chamber, an etch chamber and a metrology chamber, and a robot configured to transfer a substrate between the deposition chamber or etch chamber and the metrology chamber.
    Type: Application
    Filed: October 22, 2014
    Publication date: March 17, 2016
    Inventors: Lin ZHANG, Shuran SHENG, Andrew V. LE
  • Patent number: 6764265
    Abstract: Embodiments of the present invention provide structures for reducing erosion of a slit valve utilized in the fabrication of semiconductor devices. Specifically, non-metallic slit valve components such as a compressible sealing member and a barrier that assist in sealing the valve closure against the slit valve seat, are positioned on the valve seat rather than on the valve closure. This orientation removes the seal and the seal barrier from the direct line of sight of the plasma within the processing chamber, reducing exposure of the sealing member and seal barrier slit valve components to erosion and thereby extending the lifetime of the valve.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: July 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Charles S. Kunze, Andrew V. Le, Muhammad Rasheed
  • Publication number: 20030129044
    Abstract: Embodiments of the present invention provide structures for reducing erosion of a slit valve utilized in the fabrication of semiconductor devices. Specifically, non-metallic slit valve components such as a compressible sealing member and a barrier that assist in sealing the valve closure against the slit valve seat, are positioned on the valve seat rather than on the valve closure. This orientation removes the seal and the seal barrier from the direct line of sight of the plasma within the processing chamber, reducing exposure of the sealing member and seal barrier slit valve components to erosion and thereby extending the lifetime of the valve.
    Type: Application
    Filed: January 7, 2002
    Publication date: July 10, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Charles S. Kunze, Andrew V. Le, Muhammad Rasheed