Patents by Inventor Andrew W. CARROLL

Andrew W. CARROLL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200078117
    Abstract: An energy module connectable to a surgical instrument is disclosed. The energy module can include a circuit, which can include a first amplifier and a second amplifier coupled to a port of the energy module to which a surgical instrument is connectable. The first amplifier can be configured to generate a first drive signal at a first frequency range and the second amplifier can be configured to generate a second drive signal at a second frequency range. The circuit can be configured to control the amplifiers to deliver the first drive signal, the second drive signal, and/or a combination of the first and second drive signals to a surgical instrument connected to the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078120
    Abstract: A modular surgical system for use in a surgical procedure is disclosed. The modular surgical system includes a header module, a first surgical module, a second surgical module, a first backplane connector configured to detachably connect the header module to the first surgical module, and a second backplane connector configured to detachably connect the first surgical module to the second surgical module. The first surgical module is arrangeable in a stack configuration with the header module and the second surgical module. The first backplane connector is configured to yield a first bit pattern identifying the first surgical module in the stack configuration. The second backplane connector is configured to yield a second bit pattern identifying the second surgical module in the stack configuration. The first bit pattern is different than the second bit pattern.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Jeffrey L. Aldridge, Andrew W. Carroll
  • Publication number: 20200078119
    Abstract: A modular surgical system is disclosed. The modular surgical system comprises a header module, a first surgical module, a second surgical module, and a module identification circuit. The second surgical module is arrangeable in a stack configuration with the header module and the first surgical module. The module identification circuit is configured to cause a pre-determined current to be transmitted to the first surgical module through the second surgical module in the stack configuration, detect a first voltage indicative of a first position of the first surgical module in the stack configuration, and detect a second voltage indicative of a second position of the second surgical module in the stack configuration. The second voltage is different than the first voltage.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener
  • Publication number: 20200078070
    Abstract: A method of operating a modular surgical system including a control module, a first surgical module, and a second surgical module is disclosed. The method includes detachably connecting the first surgical module to the control module by stacking the first surgical module with the control module in a stack configuration, detachably connecting the second surgical module to the first surgical module by stacking the second surgical module with the control module and the first surgical module in the stack configuration, powering up the modular surgical system, and monitoring distribution of power from a power supply of the control module to the first surgical module and the second surgical module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Gregory J. Bakos
  • Publication number: 20200078078
    Abstract: Aspects of the present disclosure are presented for providing coordinated energy outputs of separate but connected modules, in some cases using communication protocols such as the Data Distribution Service standard (DDS). In some aspects, there is provided a communication circuit between a header or main device, a first module, and a second module, each including connection to a segment of a common backplane, where the output from a first module can be adjusted by sensing a parameter from a second module. In some aspects, the signal can pass from the first module through the header to the second module, or in other cases directly from the first module to the second module. Aspects of the present disclosure also include methods for automatically activating a bipolar surgical system in one or more of the modular systems using the DDS standard.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Benjamin J. Danziger
  • Publication number: 20200078110
    Abstract: A modular energy system including a header module and a module. The header module includes a display screen for displaying a user interface. The header module is configured to receive data, including safety critical data, from the module, control the display screen to cause the UI to display UI content based on the received data, the UI content including safety critical UI content based on the safety critical data, and transmit the displayed safety critical UI content to the module for verification thereby. The module is configured to confirm whether the transmitted safety critical data coincides with the displayed safety critical UI content. In the event that it is determined that they do not coincide, the header module and/or the module can be configured to stop the function(s) of the module, display an alert on the display screen, and take various other actions.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200078118
    Abstract: A modular surgical system for use in a surgical procedure is disclosed. The modular surgical system includes a control module including a power supply and surgical modules including a first surgical module and a second surgical module. The first surgical module is arranged in a stack configuration with the control module and the second surgical module. The power supply is configured to output power to the first surgical module and the second surgical module. A power backplane is configured to deliver the power to the first surgical module and the second surgical module through the first surgical module. A control circuit is configured to adaptively adjust power allocations to the first surgical module and the second surgical module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200078089
    Abstract: Aspects of the present disclosure are presented for systems and methods for identifying characteristics of a return pad in a monopolar electrosurgical system using contact quality monitoring (CQM) and near field communication (NFC) signals. In some aspects, resistance or impedance materials are sensed that may help identify what kind of return pad is being used, including what is the structure of the pad. In some aspects, NFC signals are used to identify characteristics of the return pad. In some aspects, the grounding or return pad may include two separate materials that form an interconnecting or interwoven mesh and both act as non-active electrodes when both contact the patient. A non-zero impedance may separate conductive lines connecting the two separate materials that may be analyzed to obtain a defining signature about that is linked to structural characteristics about the return pad.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Benjamin J. Danziger
  • Publication number: 20200078077
    Abstract: An energy module is disclosed. The energy module includes a control circuit and a two wire interface coupled to the control circuit. The two wire interface is configured as a power source and as a communication interface between the energy module and a neutral electrode.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon
  • Publication number: 20200078106
    Abstract: A method for controlling a user interface of a modular energy system. The modular energy system comprises a header module and a display screen on which the user interface is displayed. The modular energy system can detect attachment of a first module thereto, control the user interface to display one or more first user interface elements corresponding to the first module, detect attachment of a second module to the modular energy system, control the user interface to resize the one or more first user interface elements to accommodate display of one or more second user interface elements corresponding to the second module, and control the user interface to display the one or more second user interface elements. The various UI elements can correspond to the particular module type that is being connected to the modular energy system.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Gregory J. Bakos
  • Publication number: 20200078079
    Abstract: Aspects of the present disclosure are presented for managing simultaneous outputs of surgical instruments. In some aspects, methods are presented for synchronizing the current frequencies. In some aspects, methods are presented for conducting duty cycling of energy outputs of two or more instruments. In some aspects, systems are presented for managing simultaneous monopolar outputs of two or more instruments, including providing a return pad that properly handles both monopolar outputs in some cases.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua P. Morgan, Nabeel Jadeed, Eitan T. Wiener, Joshua Henderson, Andrew W. Carroll, Jeffrey L. Aldridge
  • Publication number: 20200078112
    Abstract: A modular surgical system is disclosed includes a header module including a power supply, a first surgical module, a second surgical module, and a segmented power backplane. The first surgical module is arrangeable in a stack configuration with the header module and the second surgical module. The segmented power backplane includes a first backplane segment in the header module, a second backplane segment in the first surgical module, and a third backplane segment in the second surgical module. The second backplane segment is detachably coupled to the first backplane segment in the stack configuration and the third backplane segment is detachably coupled to the second backplane segment in the stack configuration. The first backplane segment, the second backplane segment, and the third backplane segment are configured to cooperate to transmit energy from the power supply to the second surgical module in the stack configuration.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Brian J. Melewski
  • Publication number: 20200078082
    Abstract: A surgical instrument connectable to a surgical energy module that is configured to provide a first drive signal at a first frequency range for driving a first energy modality and a second drive signal at a second frequency range for driving a second energy modality is provided. The surgical instrument can comprise a surgical instrument component configured to receive power from a direct current (DC) power source, an end effector, and a circuit. The circuit can be configured to convert the first electrical signal to a DC voltage, apply the DC voltage to the surgical instrument component, and deliver the second energy modality to the end effector according to the second drive signal. Alternatively, the circuit can be disposed within a cable assembly configured to connect the surgical instrument to the surgical energy module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener
  • Publication number: 20190201041
    Abstract: Various systems and methods for controlling the activation of energy surgical instruments are disclosed. An advance energy surgical instrument, such an electrosurgical instrument or an ultrasonic surgical instrument, can include one or more sensor assemblies for detecting the state or position of the end effector, arm, or other components of the surgical instrument. A control circuit can be configured to control the activation of the surgical instrument according to the state or position of the components of the surgical instrument.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 4, 2019
    Inventors: Cory G. Kimball, Ion V. Nicolaescu, Andrew W. Carroll, David C. Yates, Daniel W. Price, William B. Weisenburgh, II, Jeffrey L. Aldridge, Monica Louise Zeckel Rivard, Heather N. Doak, Mary E. Mootoo, Eric M. Roberson
  • Publication number: 20190206551
    Abstract: Various surgical hubs are disclosed. A surgical hub is for use with a surgical system in a surgical procedure performed in an operating room. The surgical hub comprises a control circuit configured to: determine bounds of the operating room; determine devices of the surgical system located within the bounds of the operating room; and pair the surgical hub with the devices of the surgical system located within the bounds of the operating room.
    Type: Application
    Filed: March 29, 2018
    Publication date: July 4, 2019
    Inventors: David C. Yates, Frederick E. Shelton, IV, Jason L. Harris, Andrew W. Carroll
  • Patent number: 10172684
    Abstract: An apparatus includes a housing, a processing circuit, a user feedback feature, and a surgical instrument interface feature. The user feedback feature is in communication with the processing circuit. The surgical instrument interface feature includes a structural interface feature and an electrical interface feature. The structural interface feature is configured to fit in a portion of a body of a surgical instrument. The portion of the body of the surgical instrument is configured to receive an ultrasonic transducer. The electrical interface feature is in communication with the processing circuit and is configured to interface with a complementary electrical interface feature of the surgical instrument. The complementary electrical interface feature of the surgical instrument is configured to couple with an ultrasonic transducer. The processing circuit is configured to receive data relating to a number of uses of the surgical instrument via the electrical interface feature.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: January 8, 2019
    Assignee: Ethicon LLC
    Inventors: Sean P. Conlon, Lucas B. Elmer, Andrew W. Carroll
  • Publication number: 20170312044
    Abstract: An apparatus includes a housing, a processing circuit, a user feedback feature, and a surgical instrument interface feature. The user feedback feature is in communication with the processing circuit. The surgical instrument interface feature includes a structural interface feature and an electrical interface feature. The structural interface feature is configured to fit in a portion of a body of a surgical instrument. The portion of the body of the surgical instrument is configured to receive an ultrasonic transducer. The electrical interface feature is in communication with the processing circuit and is configured to interface with a complementary electrical interface feature of the surgical instrument. The complementary electrical interface feature of the surgical instrument is configured to couple with an ultrasonic transducer. The processing circuit is configured to receive data relating to a number of uses of the surgical instrument via the electrical interface feature.
    Type: Application
    Filed: April 6, 2017
    Publication date: November 2, 2017
    Inventors: Sean P. Conlon, Lucas B. Elmer, Andrew W. Carroll
  • Publication number: 20140249761
    Abstract: An ensemble predictor for characterizing uncharacterized genetic mutations is disclosed. A first set of genomic information representing a particular (e.g., harmful) mutation is obtained. The first set of genomic information is provided to a number of underlying mutation impact predictors. Predictions are obtained from the underlying predictors. The predictions predict whether the first set of genomic information represents the particular mutation. The predictions and the particular (known) mutation are provided to a logistic regression model, which provides a coefficient for each underlying predictor. A second set of (uncharacterized) genomic information is obtained. The second set of genomic information is provided to the underlying predictors. Predictions are obtained from the underlying predictors and are then weighted using the coefficients. A characterization (e.g.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 4, 2014
    Applicant: DNANEXUS, INC.
    Inventor: Andrew W. CARROLL