Patents by Inventor Andrey Naumenko

Andrey Naumenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230359007
    Abstract: Disclosed herein are systems for imaging of samples, for example, using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. In some embodiments, detecting optics a reused to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 9, 2023
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Patent number: 11747603
    Abstract: Exemplary systems are for imaging of samples, for example using an array of micro optical elements. In some embodiments, an optical chip including an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. In some embodiments, detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 5, 2023
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Patent number: 11609416
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: March 21, 2023
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20230058111
    Abstract: In some embodiments, a method provides a live view mode without scanning a micro optical element array in which successive image(s) are generated, and optionally displayed, that comprise image pixels that represent sample light received from micro optical elements in an array for different, spatially distinct locations in a sample. Images can be of a useful size and resolution to obtain information indicative of a real time sample state. A full image acquisition by scanning a micro optical element array may be initiated when a sample has sufficiently (self-) stabilized. In some embodiments, a method provides images including a stabilization index without scanning a micro optical element array. A stabilization index that represents an empirically derived quantitative assessment of a degree of stabilization may be determined (e.g., calculated) for sample light received from for one or more micro optical elements each represented by one or more image pixels in an image.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 23, 2023
    Inventors: Etienne Shaffer, Aurèle Timothée Horisberger, Andrey Naumenko, Diego Joss
  • Publication number: 20220035147
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Patent number: 11181728
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 23, 2021
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20210248746
    Abstract: Systems and methods to identify and/or reduce or eliminate sample motion artifacts are disclosed. Sample motion artifacts may be reduced or eliminated using scan patterns where an acquisition time difference between when perimeter pixels in adjacent tiles are acquired is reduced, as compared to a conventional raster scan to reduce or eliminate discontinuities that would otherwise appear at tile boundaries in an image. In some embodiments, test images acquired using relatively small test scan patterns or intensities of test points acquired at different times may be compared to determine whether sample motion has occurred. In some embodiments, intensity of adjacent pixels at a tile boundary are compared. In some embodiments, intensity of one or more single pixels is monitored over time to determine whether sample motion has occurred over a period of time. In some embodiments, a flattening or reshaping tool may be used to suppress sample motion during imaging.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 12, 2021
    Inventors: Andrey Naumenko, Aurèle Timothée Horisberger, Diego Joss, Frédéric Schmitt, Etienne Shaffer, Jonathan Abel Pirolet, Bastien Rachet, Andrew Logvinov
  • Publication number: 20200393665
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20200257098
    Abstract: Disclosed herein are systems for imaging of samples, for example, using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. In some embodiments, detecting optics a reused to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Patent number: 10575737
    Abstract: An OCI medical device includes a coherent light source, a light sensor, a first processing unit adapted to calculate OCI Data from the light sensor, a control unit which allows taking or loading of at least one Reference OCI Value, a second processing unit adapted to calculate the Intra-Individual Relative Assessment of the OCI Data of an Imaging Zone and the at least one OCI Reference Value, and display means adapted to show at least one Relative OCI Value. Uses and a method for assessing the blood flow of a body region use OCI imaging and include an Intra-Individual Relative Assessment between OCI Data of the Imaging Zone and at least one Reference OCI Value.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: March 3, 2020
    Assignee: Novadaq Technologies ULC
    Inventors: Marc Andre, Michael Friedrich, Tyler Thacher, Andrey Naumenko, Romain Farkas
  • Publication number: 20200033581
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20190137752
    Abstract: Disclosed herein are systems for imaging of samples using an array of micro optical elements and methods of their use. In some embodiments, an optical chip comprising an array of micro optical elements moves relative to an imaging window and a detector in order to scan over a sample to produce an image. A focal plane can reside within a sample or on its surface during imaging. Detecting optics are used to detect back-emitted light collected by an array of micro optical elements that is generated by an illumination beam impinging on a sample. In some embodiments, an imaging system has a large field of view and a large optical chip such that an entire surface of a sample can be imaged quickly. In some embodiments, a sample is accessible by a user during imaging due to the sample being exposed while disposed on or over an imaging window.
    Type: Application
    Filed: September 28, 2018
    Publication date: May 9, 2019
    Inventors: Etienne Shaffer, Bastien Rachet, Aurèle Timothée Horisberger, Jonathan Abel Pirolet, Diego Joss, Andrey Naumenko, Frédéric Schmitt
  • Publication number: 20150080742
    Abstract: An OCI medical device includes a coherent light source, a light sensor, a first processing unit adapted to calculate OCI Data from the light sensor, a control unit which allows taking or loading of at least one Reference OCI Value, a second processing unit adapted to calculate the Intra-Individual Relative Assessment of the OCI Data of an Imaging Zone and the at least one OCI Reference Value, and display means adapted to show at least one Relative OCI Value. Uses and a method for assessing the blood flow of a body region use OCI imaging and include an Intra-Individual Relative Assessment between OCI Data of the Imaging Zone and at least one Reference OCI Value.
    Type: Application
    Filed: April 25, 2013
    Publication date: March 19, 2015
    Applicant: AIMAGO S.A.
    Inventors: Marc Andre, Michael Friedrich, Tyler Thacher, Andrey Naumenko, Romain Farkas
  • Publication number: 20130172735
    Abstract: The invention concerns an OCI medical device (100) comprising the following elements:—a coherent light source (120),—a 2D light sensor (120),—a screen (110) that displays OCI map and/or mixture map,—a processing unit that calculates the OCI map; all said elements being included in a single movable unit. The invention also relates to the use of said OCI medical device.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 4, 2013
    Applicant: AIMAGO S.A.
    Inventors: Marc Andre, Michael Friedrich, Andrey Naumenko, Romain Farkas, Theo Lasser