Patents by Inventor Andriy Maharyta

Andriy Maharyta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972078
    Abstract: A capacitance sensing device includes a transmit (TX) generator for generating a sequence of receive (RX) signals by applying each TX signal pattern in a sequence of TX signal patterns to a set of sensor electrodes. For each TX signal pattern in the sequence of TX signal patterns, and for each subset of three or more contiguous sensor electrodes of the set of sensor electrodes, the TX generator applies to the subset one of a first excitation signal and a second excitation signal. The plurality of subsets includes at least half of the sensor electrodes in the set of sensor electrodes. The capacitance sensing device also includes a sequencer circuit coupled with the TX generator. For each TX signal pattern in the sequence of TX signal patterns, the sequencer circuit determines a next subsequent TX signal pattern in the sequence based on a circular rotation of the TX signal pattern. The capacitance sensing device also includes a processing block coupled with the TX generator.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: April 30, 2024
    Assignee: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Volodymyr Bihday, Ruslan Omelchuk, Oleksandr Pirogov, Vasyl Mandziy, Roman Ogirko, Ihor Musijchuk, Andriy Maharyta, Igor Kolych, Igor Kravets
  • Patent number: 11879919
    Abstract: A method can include in a first phase of a sensing operation, controlling at least a first switch to energize a sensor inductance; in a second phase of the sensing operation that follows the first phase, controlling at least a second switch to couple the sensor inductance to a first modulator capacitance to induce a first fly-back current from the sensor inductance, the first fly-back current generating a first modulator voltage at the first modulator capacitance, and in response to the first modulator voltage, controlling at least a third switch to generate a balance current that flows in an opposite direction to the fly-back current at the first modulator node. The first and second phases can be repeated to generate a first modulator voltage at the first modulator capacitance. the modulator voltage can be converted into a digital value representing the sensor inductance. Related devices and systems are also disclosed.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: January 23, 2024
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Mykhaylo Krekhovetskyy
  • Patent number: 11868561
    Abstract: Apparatuses and methods of multi-phase scanning of a touch panel are described. One apparatus selects a sequence having a number of one values, negative one values, and zero values. The one values correspond to an in-phase drive signal, the negative one values correspond to an opposite-phase drive signal, and the zero values correspond to a reference signal (e.g., reference voltage or ground). A sum of the sequence is equal to zero. The apparatus applies one of the in-phase drive signal, the opposite-phase drive signal, or the reference signal to each of a first set of electrodes at a first stage according to the sequence. The apparatus rotates the sequence to obtain a rotated sequence and applies one of the signals according to the rotated sequence. The apparatus receives sense signals to detect a presence of an object on the touch panel.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: January 9, 2024
    Assignee: Cypress Semiconductor Corporation
    Inventors: Volodymyr Bihday, Andriy Maharyta, Igor Kravets, Mykhaylo Krekhovetskyy, Ihor Musijchuk
  • Publication number: 20230324269
    Abstract: A hydrometer device according to an example includes a floating waterproof device container, and a liquid level sensor positioned in the device container to sense an immersion level of the device container when the device container is floating in a container of liquid. The hydrometer device further includes a conversion circuit positioned in the device container to convert the sensed immersion level to a digital value, and a controller positioned in the device container to determine a liquid density value for the liquid based on the digital value.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 12, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Volodymyr BIHDAY, Oleg KAPSHII, Mykhaylo KREKHOVETSKYY, Andriy MAHARYTA, Vasyl MANDZIY
  • Patent number: 11782517
    Abstract: Apparatuses and methods of high-distance directional proximity sensors are described. One apparatus includes at least three electrodes in a sensor layer, an electrode in a shield layer, and an insulator located between the layers. A processing device is configured to scan the at least three electrodes over a period of time to obtain a digital signal for each of the at least three electrodes while driving a shield signal on the electrode of the shield layer. The processing device detects a gesture by an object using the digital signals. The processing device measures an amplitude value of the digital signal for each of the at least three electrodes and outputs an indication of the gesture responsive to a ratio of a highest amplitude value and a lowest amplitude value satisfying a first threshold criterion that represents the object being within a proximity detection area above the sensor layer.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: October 10, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Vasyl Mandziy, Oleksandr Karpin, Oleksandr Hoshtanar
  • Patent number: 11726607
    Abstract: Apparatus and methods of impedance sensing are described. One method includes performing a first digital conversion of an attribute of a sensor electrode and performing a second digital conversion of the attribute of the sensor electrode. The second digital conversion differs by at least one characteristic from the first digital conversion. The method further includes calculating a resistance of the sensor electrode from a first and second digital value of the first and second digital conversions, respectively; and calculating a capacitance of the sensor electrode from the first and second digital value of the first and second digital conversions, respectively.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: August 15, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Hans Klein, Oleksandr Karpin, Roman Ogirko
  • Publication number: 20230204644
    Abstract: A method can include in a first phase of a sensing operation, controlling at least a first switch to energize a sensor inductance; in a second phase of the sensing operation that follows the first phase, controlling at least a second switch to couple the sensor inductance to a first modulator capacitance to induce a first fly-back current from the sensor inductance, the first fly-back current generating a first modulator voltage at the first modulator capacitance, and in response to the first modulator voltage, controlling at least a third switch to generate a balance current that flows in an opposite direction to the fly-back current at the first modulator node. The first and second phases can be repeated to generate a first modulator voltage at the first modulator capacitance. the modulator voltage can be converted into a digital value representing the sensor inductance. Related devices and systems are also disclosed.
    Type: Application
    Filed: January 19, 2023
    Publication date: June 29, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Andriy MAHARYTA, Mykhaylo KREKHOVETSKYY
  • Publication number: 20230176660
    Abstract: Apparatuses and methods of high-distance directional proximity sensors are described. One apparatus includes at least three electrodes in a sensor layer, an electrode in a shield layer, and an insulator located between the layers. A processing device is configured to scan the at least three electrodes over a period of time to obtain a digital signal for each of the at least three electrodes while driving a shield signal on the electrode of the shield layer. The processing device detects a gesture by an object using the digital signals. The processing device measures an amplitude value of the digital signal for each of the at least three electrodes and outputs an indication of the gesture responsive to a ratio of a highest amplitude value and a lowest amplitude value satisfying a first threshold criterion that represents the object being within a proximity detection area above the sensor layer.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 8, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Vasyl Mandziy, Oleksandr Karpin, Oleksandr Hoshtanar
  • Patent number: 11669207
    Abstract: Apparatuses and methods of capacitance-to-digital code conversion are described. One apparatus includes a bridge circuit and a modulator front-end circuit. The bridge circuit includes a first terminal to couple to a reference cell and a second terminal to couple to a sensor cell. The modulator front-end circuit includes a comparator coupled to the bridge circuit, a first modulation capacitor coupled to a first input of the comparator, and a second modulation capacitor coupled to a second input of the comparator. The modulator front-end circuit provides a digital bitstream. A duty cycle of the digital bitstream is representative of a ratio between a capacitance of the sensor cell and a reference capacitance of the reference cell.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: June 6, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventor: Andriy Maharyta
  • Publication number: 20230110841
    Abstract: A system can include one or more electrodes; a sensor structure configured to position electrodes over a surface of a body that includes an artery. A capacitance sensing circuit can be coupled to the electrodes and configured to acquire capacitance values of the electrodes over a predetermined time period. The capacitance values can correspond to a distance between the body surface and the at least one electrode. Processor circuits can be configured to generate APW data from the capacitance values. Corresponding methods and devices are also disclosed.
    Type: Application
    Filed: August 30, 2022
    Publication date: April 13, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Richard SWEET, JR., Igor KOLYCH, Mykhaylo KREKHOVETSKYY, Igor KRAVETS, Oleksandr KARPIN, Andriy MAHARYTA
  • Publication number: 20230088156
    Abstract: Apparatus and methods of impedance sensing are described. One method includes performing a first digital conversion of an attribute of a sensor electrode and performing a second digital conversion of the attribute of the sensor electrode. The second digital conversion differs by at least one characteristic from the first digital conversion. The method further includes calculating a resistance of the sensor electrode from a first and second digital value of the first and second digital conversions, respectively; and calculating a capacitance of the sensor electrode from the first and second digital value of the first and second digital conversions, respectively.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 23, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Andriy MAHARYTA, Hans KLEIN, Oleksandr KARPIN, Roman OGIRKO
  • Publication number: 20230071912
    Abstract: Apparatuses and methods of capacitance-to-digital code conversion are described. One apparatus includes a bridge circuit and a modulator front-end circuit. The bridge circuit includes a first terminal to couple to a reference cell and a second terminal to couple to a sensor cell. The modulator front-end circuit includes a comparator coupled to the bridge circuit, a first modulation capacitor coupled to a first input of the comparator, and a second modulation capacitor coupled to a second input of the comparator. The modulator front-end circuit provides a digital bitstream. A duty cycle of the digital bitstream is representative of a ratio between a capacitance of the sensor cell and a reference capacitance of the reference cell.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 9, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventor: Andriy MAHARYTA
  • Patent number: 11594066
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: February 28, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 11561249
    Abstract: A method can include in a first phase of a sensing operation, controlling at least a first switch to energize a sensor inductance; in a second phase of the sensing operation that follows the first phase, controlling at least a second switch to couple the sensor inductance to a first modulator capacitance to induce a first fly-back current from the sensor inductance, the first fly-back current generating a first modulator voltage at the first modulator capacitance, and in response to the first modulator voltage, controlling at least a third switch to generate a balance current that flows in an opposite direction to the fly-back current at the first modulator node. The first and second phases can be repeated to generate a first modulator voltage at the first modulator capacitance. the modulator voltage can be converted into a digital value representing the sensor inductance. Related devices and systems are also disclosed.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 24, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Mykhaylo Krekhovetskyy
  • Patent number: 11556184
    Abstract: Apparatuses and methods of high-distance directional proximity sensors are described. One apparatus includes at least three electrodes in a sensor layer, an electrode in a shield layer, and an insulator located between the layers. A processing device is configured to scan the at least three electrodes over a period of time to obtain a digital signal for each of the at least three electrodes while driving a shield signal on the electrode of the shield layer. The processing device detects a gesture by an object using the digital signals. The processing device measures an amplitude value of the digital signal for each of the at least three electrodes and outputs an indication of the gesture responsive to a ratio of a highest amplitude value and a lowest amplitude value satisfying a first threshold criterion that represents the object being within a proximity detection area above the sensor layer.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: January 17, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Vasyl Mandziy, Oleksandr Karpin, Oleksandr Hoshtanar
  • Publication number: 20220382451
    Abstract: Apparatuses and methods of multi-phase scanning of a touch panel are described. One apparatus selects a sequence having a number of one values, negative one values, and zero values. The one values correspond to an in-phase drive signal, the negative one values correspond to an opposite-phase drive signal, and the zero values correspond to a reference signal (e.g., reference voltage or ground). A sum of the sequence is equal to zero. The apparatus applies one of the in-phase drive signal, the opposite-phase drive signal, or the reference signal to each of a first set of electrodes at a first stage according to the sequence. The apparatus rotates the sequence to obtain a rotated sequence and applies one of the signals according to the rotated sequence. The apparatus receives sense signals to detect a presence of an object on the touch panel.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Applicant: Cypress Semiconductor Corporation
    Inventors: Volodymyr Bihday, Andriy Maharyta, Igor Kravets, Mykhaylo Krekhovetskyy, Ihor Musijchuk
  • Publication number: 20220360275
    Abstract: A device can include analog circuits formed with a substrate, including a comparator, analog switches, and a balance current circuit. A sensor current and balance current can be applied at an input of the comparator. The sensor current, balance current or both can be modulated with a switch control signal. Digital circuits can include switch control logic that generates the switch control signal in response to an output of the comparator and a modulation clock signal. Digital signal processing circuits can generate a multi-bit digital value from a bit stream output by the comparator circuit. The multi-bit digital value can be an analog-to-digital conversion of the sensor current. Corresponding methods and systems are also disclosed.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 10, 2022
    Applicant: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Oleksandr Karpin, Paul Walsh, Mark Healy
  • Patent number: 11467693
    Abstract: Apparatus and methods of impedance sensing are described. One method includes performing a first digital conversion of an attribute of a sensor electrode and performing a second digital conversion of the attribute of the sensor electrode. The second digital conversion differs by at least one characteristic from the first digital conversion. The method further includes calculating a resistance of the sensor electrode from a first and second digital value of the first and second digital conversions, respectively; and calculating a capacitance of the sensor electrode from the first and second digital value of the first and second digital conversions, respectively.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: October 11, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Hans Klein, Oleksandr Karpin, Roman Ogirko
  • Patent number: 11442578
    Abstract: Apparatuses and methods of capacitance-to-digital code conversion are described. One apparatus includes a bridge circuit and a modulator front-end circuit. The bridge circuit includes a first terminal to couple to a reference cell and a second terminal to couple to a sensor cell. The modulator front-end circuit includes a comparator coupled to the bridge circuit, a first modulation capacitor coupled to a first input of the comparator, and a second modulation capacitor coupled to a second input of the comparator. The modulator front-end circuit provides a digital bitstream. A duty cycle of the digital bitstream is representative of a ratio between a capacitance of the sensor cell and a reference capacitance of the reference cell.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: September 13, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventor: Andriy Maharyta
  • Publication number: 20220196437
    Abstract: A method can include in a first phase of a sensing operation, controlling at least a first switch to energize a sensor inductance; in a second phase of the sensing operation that follows the first phase, controlling at least a second switch to couple the sensor inductance to a first modulator capacitance to induce a first fly-back current from the sensor inductance, the first fly-back current generating a first modulator voltage at the first modulator capacitance, and in response to the first modulator voltage, controlling at least a third switch to generate a balance current that flows in an opposite direction to the fly-back current at the first modulator node. The first and second phases can be repeated to generate a first modulator voltage at the first modulator capacitance. the modulator voltage can be converted into a digital value representing the sensor inductance. Related devices and systems are also disclosed.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: Cypress Semiconductor Corporation
    Inventors: Andriy Maharyta, Mykhaylo Krekhovetskyy