Patents by Inventor Angela T. Hui

Angela T. Hui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6670265
    Abstract: An integrated circuit wafer and a manufacturing process for etching low K spin-on dielectrics such as HSQ in a High Density Plasma etch reactor utilizes roof and wall temperature to improve across-the-wafer uniformity, and a mixture of C4F8 and C2F6 etch gases to eliminate mid via etch stop and to maintain selectivity over underlying etch-stop layers.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: December 30, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fei Wang, James K. Kai, Angela T. Hui
  • Patent number: 6664180
    Abstract: An exemplary method of forming trench lines includes providing a photoresist pattern over an anti-reflective coating (ARC) layer where the ARC layer is deposited over a layer of material; etching the ARC layer according to the photoresist pattern to form ARC features; forming spacers on lateral sides of the ARC features; and etching trench lines using the spacers and ARC features as hard mask to define portions of the layer of material which are etched.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 16, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Bhanwar Singh
  • Patent number: 6664191
    Abstract: A method is provided of forming lines with spaces between memory cells below a minimum printing dimension of a photolithographic tool set. In one aspect of the invention, lines and spaces are formed in a first polysilicon layer that forms floating gates of flash memory cells. STI regions are formed between adjacent memory cells in a substrate to isolate the cells from one another. The first polysilicon layer is deposited over the substrate covering the STI regions. The first polysilicon layer is then planarized by a CMP process or the like to eliminate overlay issues associated with the STI regions. A hard mask layer is deposited over the first polysilicon layer and a first space dimension d1 etched between adjacent memory cells. A conformal nitride layer is deposited over the hard mask layer and an etch step performed to form nitride side walls adjacent the spaces.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: December 16, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Unsoon Kim, Yider Wu, Yu Sun, Michael K. Templeton, Angela T. Hui, Chi Chang
  • Patent number: 6656763
    Abstract: A method of making organic memory cells made of two electrodes with a controllably conductivce media between the two electrodes is disclosed. The controllably conductive media contains an organic semiconductor layer and passive layer. The organic semiconductor layer is formed using spin-on techniques with the assistance of certain solvents.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: December 2, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jane V. Oglesby, Christopher F. Lyons, Ramkumar Subramanian, Angela T. Hui, Minh Van Ngo, Suzette K. Pangrle
  • Patent number: 6653190
    Abstract: A method of manufacturing for a MirrorBit® Flash memory includes depositing a charge-trapping material over a semiconductor substrate and implanting first and second bitlines in the semiconductor substrate. A wordline material is deposited over the charge-trapping dielectric material and a hard mask material deposited thereon. An anti-reflective coating (ARC) material is deposited on the hard mask material and a photoresist material is deposited on the ARC followed by processing the photoresist material and the ARC material to form a photomask of a patterned photoresist and a patterned ARC. The hard mask material is processed using the photomask to form a hard mask. The patterned photoresist is removed and then the patterned ARC without damaging the hard mask or the wordline material. The wordline material is processed using the hard mask to form a wordline and the hard mask is removed without damaging the wordline or the charge-trapping material.
    Type: Grant
    Filed: December 15, 2001
    Date of Patent: November 25, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jean Y. Yang, Kouros Ghandehari, Tazrien Kamal, Minh Van Ngo, Mark T. Ramsbey, Dawn M. Hopper, Angela T. Hui, Scott A. Bell
  • Patent number: 6635943
    Abstract: A method and system for insulating a lower layer of a semiconductor device from an upper layer of the semiconductor device is disclosed. The method and system include providing an interlayer dielectric on the lower layer. The interlayer dielectric is capable of gap filling while using only species of relatively low mobility. The method and system also include planarizing a surface of the interlayer dielectric.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: October 21, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Tuan Duc Pham, Richard J. Huang, Mark T. Ramsbey, Lu You
  • Patent number: 6617215
    Abstract: A manufacturing method for a MirrorBit® Flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric material. First and second bitlines are implanted and a wordline material is deposited. A hard mask material is deposited over the wordline material. The hard mask material is of a material having the characteristic of being deposited rather than grown. A photoresist material is deposited over the wordline material and is patterned to form a patterned hard mask. The patterned photoresist material is removed. The wordline material is processed using the patterned hard mask to form a wordline. The patterned hard mask material is removed.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: September 9, 2003
    Assignees: Advanced Micro Devices, Inc., Fujitsu Limited
    Inventors: Arvind Halliyal, Tazrien Kamal, Minh Van Ngo, Mark T. Ramsbey, Jeffrey A. Shields, Jean Y. Yang, Emmanuil Lingunis, Angela T. Hui, Jusuke Ogura
  • Patent number: 6593632
    Abstract: The capacitance between the gate of a transistor and local interconnect is reduced employing SiC as an etch stop layer. Embodiments include depositing a SiC etch stop layer having a thickness of about 500-1000 Å and a dielectric constant of less than about 3.2, thereby providing a composite dielectric constant between the gate and local interconnect of between about 3.7 to about 4.7. The SiC etch stop layer can be deposited by PECVD or HDP techniques.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Minh Van Ngo, Angela T. Hui, Chun Jiang, Hamid Partovi
  • Patent number: 6589841
    Abstract: An improved flash memory device having core stacks and periphery stacks which are protected by first and second thin side walls, side spacers over the side walls, and an HTO layer over the stacks, and side spacer. The flash memory device has an intermetallic dielectric layer placed over the HTO layer. A tungsten plug is placed in the intermetallic dielectric layer to provide an electrical connection to the drain of the flash memory device. The additional first and second side walls reduce current leakage between core stacks and the tungsten plug and help to protect the stacks during fabrication.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: July 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Tuan Duc Pham, Mark T. Ramsbey, Sameer S. Haddad, Angela T. Hui
  • Patent number: 6583009
    Abstract: The present invention relates to a method of forming a stacked gate flash memory cell and comprises forming a tunnel oxide layer, a first conductive layer, an interpoly dielectric layer, and a second conductive layer in succession over a semiconductor substrate. The method further comprises forming a sacrificial layer over the second conductive layer, and patterning the sacrificial layer to form a sacrificial layer feature having at least one lateral sidewall edge associated therewith. A sidewall spacer is then formed against the lateral sidewall edge of the sacrificial layer, wherein the spacer has a width associated therewith, and the patterned sacrificial layer feature is removed. Finally, the second conductive layer, the interpoly dielectric and the first conductive layer are patterned using the spacer as a hard mask, and defining the stacked gate, wherein a width of the stacked gate is a function of the spacer width.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: June 24, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Kelwin Ko, Hiroyuki Kinoshita, Sameer Haddad, Yu Sun
  • Patent number: 6548334
    Abstract: A method of fabricating an improved flash memory device having core stacks and periphery stacks which are protected with an oxide layer, a protective layer and an insulating layer. A high energy dopant implant is used to pass the dopant through the insulating layer, the protective layer and oxide layer into the substrate to create source and drain regions, without using a self aligned etch. The flash memory device has an intermetallic dielectric layer placed over the core stacks and the periphery stacks. A tungsten plug is placed in the intermetallic dielectric layer to provide an electrical connection to the drain of the flash memory device.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Tuan Duc Pham, Mark T. Ramsbey, Sameer S. Haddad, Angela T. Hui
  • Patent number: 6528398
    Abstract: An exemplary embodiment described in the disclosure relates to a method of fabricating an integrated circuit which includes providing a bulk layer over a semiconductor substrate, providing an imaging layer over the bulk layer, imaging the imaging layer to expose portions of the imaging layer, removing the exposed portions of the imaging layer, etching the bulk layer at locations where exposed portions of the imaging layer were removed to provide at least one aperture in the bulk layer, and silylating the bulk layer.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: March 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kouros Ghandehari, Bhanwar Singh, Angela T. Hui
  • Patent number: 6514868
    Abstract: An exemplary method is described which forms a contact hole having a critical dimension which is smaller than the critical dimension possible using conventional lithographic techniques. This method can include providing a hard mask over a layer of material in which a contact hole is to be formed; etching the hard mask with a first critical dimension at the top of the hard mask and a second critical dimension at the bottom of the hard mask; and etching a contact hole using the hard mask to transfer the second critical dimension to the contact hole.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Bhanwar Singh
  • Patent number: 6514849
    Abstract: An exemplary method of forming contact holes includes providing a photoresist pattern over an anti-reflective coating (ARC) layer where the ARC layer is deposited over a layer of material; etching the ARC layer according to the photoresist pattern to form ARC features; forming spacers on lateral sides of the ARC features; and etching trench lines using the spacers and ARC features as hard mask to define portions of the layer of material which are etched.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Bhanwar Singh
  • Patent number: 6514867
    Abstract: An exemplary method is described which forms narrow trench lines having a critical dimension which is smaller than the critical dimension possible using conventional lithographic techniques. This method can include providing a hard mask over a layer of material in which a trench line is to be formed; etching the hard mask with a first critical dimension at the top of the hard mask and a second critical dimension at the bottom of the hard mask; and etching a trench line using the hard mask to transfer the second critical dimension to the trench line.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Angela T. Hui, Bhanwar Singh
  • Patent number: 6514874
    Abstract: A method of fabricating an integrated circuit can include providing a layer of silicon nitride over a semiconductor substrate where the layer of silicon nitride has a first thickness selected based on a desired size of extensions; providing a layer of photoresist material over the layer of silicon nitride; patterning the layer of photoresist to form photoresist features being separated at the top of the photoresist features by one minimum lithographic feature and etching a portion of the layer of silicon nitride to form a hole for an integrated circuit device feature. The photoresist features include extensions at the bottom of the photoresist features. The extensions define footings. These footings reduce the separation at the bottom of the photoresist features. As such, exposed portions of the layer of silicon nitride are less than one minimum lithographic feature in width.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James Jiahua Yu, Bhanwar Singh, Angela T. Hui
  • Patent number: 6506683
    Abstract: A semiconductor memory device such as a flash Electrically Erasable Programmable Read-Only Memory (Flash EEPROM) is fabricated by performing a number of process steps in-situ. Semiconductor devices having local interconnect areas are formed on a surface of a semiconductor substrate. An etch stop layer is formed over the surface of the substrate and the devices, and an inter level dielectric layer (ILD) is formed over the etch stop layer. An antireflection layer (ARC) is formed over the insulator layer, and a photoresist layer is formed over the insulator layer. The photoresist layer is photolithographically patterned to form first holes therethrough which overlie the interconnect areas. Using the patterned photoresist layer as a mask, second holes which underlie the first holes are etched using Reactive Ion Etching (RIE) through the antireflection layer to the insulator layer. Third holes are etched through the insulator layer down to the etch stop layer.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: January 14, 2003
    Assignee: Advanced Micro Devices
    Inventors: Angela T. Hui, Yongzhong Hu
  • Patent number: 6501555
    Abstract: The disclosure describes an exemplary method of detecting a process end point during etching in the fabrication of an integrated circuit. This method can include receiving a reference signal indicative of an intensity of a light source, collecting a reflection signal reflected off a surface of an integrated circuit wafer, and comparing the reference signal and the reflection signal to locate absorption bands, the absorption band being indicative of a process end point.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: December 31, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kouros Ghandehari, Bhanwar Singh, Angela T. Hui
  • Patent number: 6479348
    Abstract: A manufacturing method is provided for an integrated circuit memory with closely spaced wordlines formed by using hard mask extensions. A charge-trapping dielectric material is deposited over a semiconductor substrate and first and second bitlines are formed therein. A wordline material and a hard mask material are deposited over the wordline material. A photoresist material is deposited over the hard mask material and is processed to form a patterned photoresist material. The hard mask material is processed using the patterned photoresist material to form a patterned hard mask material. The patterned photoresist is then removed. A hard mask extension material is deposited over the wordline material and is processed to form a hard mask extension. The wordline material is processed using the patterned hard mask material and the hard mask extension to form a wordline, and the patterned hard mask material and the hard mask extension are then removed.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 12, 2002
    Assignees: Advanced Micro Devices, Inc., Fujitsu Limited
    Inventors: Tazrien Kamal, Minh Van Ngo, Mark T. Ramsbey, Jeffrey Shields, Jean Y. Yang, Emmanuil Lingunis, Hidehiko Shiraiwa, Angela T. Hui
  • Patent number: 6479411
    Abstract: A method for forming high quality multiple thickness oxide layers having different thicknesses by eliminating descum induced defects. The method includes forming an oxide layer, masking the oxide layer with a photoresist layer, and developing the photoresist layer to expose at least one region of the oxide layer. The substrate is then heated and descummed to remove any residue resulting from developing the photoresist. Alternatively, the photoresist layer may be cured prior to heating and descumming the substrate. The oxide layer is then etched, and the remaining photoresist is stripped before another layer of oxide is grown on the substrate.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: November 12, 2002
    Inventors: Angela T. Hui, Jusuke Ogura