Patents by Inventor Angelo Merassi

Angelo Merassi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10894713
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: January 19, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Publication number: 20180118561
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 3, 2018
    Inventors: Ernesto LASALANDRA, Angelo MERASSI, Sarah Zerbini
  • Patent number: 9878903
    Abstract: Methods of forming micro-electromechanical device include a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 30, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Publication number: 20150284243
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Application
    Filed: May 6, 2014
    Publication date: October 8, 2015
    Applicant: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Patent number: 8733170
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 27, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Patent number: 8124895
    Abstract: A microelectromechanical device has a mobile mass that undergoes a movement, in particular a spurious movement, in a first direction in response to an external event; the device moreover has a stopper structure configured so as to stop said spurious movement. In particular, a stopper element is fixedly coupled to the mobile mass and is configured so as to abut against a stopper mass in response to the spurious movement, thereby stopping it. In detail, the stopper element is arranged on the opposite side of the stopper mass with respect to a direction of the spurious movement, protrudes from the space occupied by the mobile mass and extends in the space occupied by the stopper mass, in the first direction.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: February 28, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Mario Francesco Cortese, Viola Fulvio, Barbara Simoni, Andrea Rusconi Clerici Beltrami
  • Patent number: 7886601
    Abstract: A microelectromechanical sensing structure is provided with a mobile element adapted to be displaced as a function of a quantity to be detected, and first fixed elements, capacitively coupled to the mobile element and configured to implement with the mobile element first detection conditions. The sensing structure is further provided with second fixed elements, capacitively coupled to the mobile element and configured to implement with the mobile element second detection conditions, which are different from the first detection conditions. In particular, the first and second detection conditions differ with respect to a full-scale or a sensitivity value in the detection of the aforesaid quantity.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 15, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Angelo Merassi, Sarah Zerbini, Hubert Geitner, Marco Del Sarto
  • Patent number: 7793544
    Abstract: An inertial sensor provided with a detection structure sensitive to a first, a second and a third component of acceleration along respective directions of detection, and generating respective electrical quantities as a function of said components of acceleration. The detection structure supplies at output a resultant electrical quantity obtained as combination of said electrical quantities, and correlated to the value of a resultant acceleration acting on the inertial sensor, given by a vector sum of the components of acceleration. In particular, the detection structure is of a microelectromechanical type, and comprises a mobile portion made of semiconductor material forming with a fixed portion a first, a second and a third detection capacitor, and an electrical-interconnection portion, connecting the detection capacitors in parallel; the resultant electrical quantity being the capacitance obtained from said connection in parallel.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 14, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Sarah Zerbini, Ernesto Lasalandra, Benedetto Vigna
  • Publication number: 20100107391
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Patent number: 7678599
    Abstract: A process for the fabrication of an inertial sensor with failure threshold includes the step of forming, on top of a substrate of a semiconductor wafer, a sample element embedded in a sacrificial region, the sample element configured to break under a preselected strain. The process further includes forming, on top of the sacrificial region, a body connected to the sample element and etching the sacrificial region so as to free the body and the sample element. The process may also include forming, on the substrate, additional sample elements connected to the body.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: March 16, 2010
    Assignees: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Patent number: 7646582
    Abstract: A micro-electromechanical device includes a semiconductor body, in which at least one first microstructure and one second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the body so as to undergo equal strains as a result of thermal expansions of the body. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the body, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the body. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by thermal expansion can be compensated for.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: January 12, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Publication number: 20090194397
    Abstract: A microelectromechanical device has a mobile mass that undergoes a movement, in particular a spurious movement, in a first direction in response to an external event; the device moreover has a stopper structure configured so as to stop said spurious movement. In particular, a stopper element is fixedly coupled to the mobile mass and is configured so as to abut against a stopper mass in response to the spurious movement, thereby stopping it. In detail, the stopper element is arranged on the opposite side of the stopper mass with respect to a direction of the spurious movement, protrudes from the space occupied by the mobile mass and extends in the space occupied by the stopper mass, in the first direction.
    Type: Application
    Filed: January 26, 2009
    Publication date: August 6, 2009
    Applicant: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Mario Francesco Cortese, Fultio Viola, Barbara Simoni, Andrea Rusconi Clerici Beltrami
  • Patent number: 7520171
    Abstract: In a micro-electromechanical structure of semiconductor material, a detection structure is formed by a stator and by a rotor, which are mobile with respect to one another in presence of an external stress and are subject to thermal stress; a compensation structure of a micro-electromechanical type, subject to thermal stress and invariant with respect to the external stress, is connected to the detection structure thereby the micro-electromechanical structure supplies an output signal correlated to the external stress and compensated in temperature.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: April 21, 2009
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Sarah Zerbini, Benedetto Vigna
  • Publication number: 20080098815
    Abstract: A microelectromechanical sensing structure is provided with a mobile element adapted to be displaced as a function of a quantity to be detected, and first fixed elements, capacitively coupled to the mobile element and configured to implement with the mobile element first detection conditions. The sensing structure is further provided with second fixed elements, capacitively coupled to the mobile element and configured to implement with the mobile element second detection conditions, which are different from the first detection conditions. In particular, the first and second detection conditions differ with respect to a full-scale or a sensitivity value in the detection of the aforesaid quantity.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 1, 2008
    Applicant: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Sarah Zerbini, Hubert Geitner, Marco Del Sarto
  • Patent number: 7322242
    Abstract: In a micro-electromechanical structure, a rotor has a centroidal axis and includes a suspended structure which carries mobile electrodes. A stator carries fixed electrodes facing the mobile electrodes. The suspended structure is connected to a rotor-anchoring region via elastic elements. The stator includes at least one stator element, which carries a plurality of fixed electrodes and is fixed to a stator-anchoring region. One of the rotor-anchoring regions and stator-anchoring regions extends along the centroidal axis and at least another of the rotor-anchoring regions and stator-anchoring regions extends in the proximity of the centroidal axis.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: January 29, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Bruno Murari, Sarah Zerbini
  • Publication number: 20080011080
    Abstract: An inertial sensor provided with a detection structure sensitive to a first, a second and a third component of acceleration along respective directions of detection, and generating respective electrical quantities as a function of said components of acceleration. The detection structure supplies at output a resultant electrical quantity obtained as combination of said electrical quantities, and correlated to the value of a resultant acceleration acting on the inertial sensor, given by a vector sum of the components of acceleration. In particular, the detection structure is of a microelectromechanical type, and comprises a mobile portion made of semiconductor material forming with a fixed portion a first, a second and a third detection capacitor, and an electrical-interconnection portion, connecting the detection capacitors in parallel; the resultant electrical quantity being the capacitance obtained from said connection in parallel.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 17, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Angelo Merassi, Sarah Zerbini, Ernesto Lasalandra, Benedetto Vigna
  • Publication number: 20070238212
    Abstract: In a micro-electromechanical structure of semiconductor material, a detection structure is formed by a stator and by a rotor, which are mobile with respect to one another in presence of an external stress and are subject to thermal stress; a compensation structure of a micro-electromechanical type, subject to thermal stress and invariant with respect to the external stress, is connected to the detection structure thereby the micro-electromechanical structure supplies an output signal correlated to the external stress and compensated in temperature.
    Type: Application
    Filed: September 14, 2005
    Publication date: October 11, 2007
    Applicant: STMicroelectronics S.r.l.
    Inventors: Angelo Merassi, Sarah Zerbini, Benedetto Vigna
  • Patent number: 7252002
    Abstract: A planar inertial sensor includes a first region and a second region of semiconductor material. The second region is capacitively coupled, and mobile with respect to the first region. The second region extends in a plane and has second portions, which face respective first portions of the first region. Movement of the second region, relative to the first region, in any direction belonging to the plane modifies the distance between the second portions and the first portions, which in turn modifies a value of the capacitive coupling.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 7, 2007
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sarah Zerbini, Angelo Merassi, Ernesto Lasalandra, Benedetto Vigna
  • Publication number: 20070175865
    Abstract: A process for the fabrication of an inertial sensor with failure threshold includes the step of forming, on top of a substrate of a semiconductor wafer, a sample element embedded in a sacrificial region, the sample element configured to break under a preselected strain. The process further includes forming, on top of the sacrificial region, a body connected to the sample element and etching the sacrificial region so as to free the body and the sample element. The process may also include forming, on the substrate, additional sample elements connected to the body.
    Type: Application
    Filed: December 4, 2006
    Publication date: August 2, 2007
    Applicants: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Publication number: 20060086995
    Abstract: A micro-electromechanical device includes a semiconductor body, in which at least one first microstructure and one second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the body so as to undergo equal strains as a result of thermal expansions of the body. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the body, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the body. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by thermal expansion can be compensated for.
    Type: Application
    Filed: October 5, 2005
    Publication date: April 27, 2006
    Applicant: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini