Patents by Inventor Anil L. Salunkhe

Anil L. Salunkhe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11834953
    Abstract: A seal assembly in a gas turbine engine is presented. The seal assembly is arranged at a forward side of an inner compressor exit diffusor. The seal assembly is arranged between an outlet guide vane assembly and the forward side of the inner compressor exit diffusor to reduce cooling air leakage therebetween or is arranged between adjacent outlet guide vane assemblies to reduce cooling air leakage therebetween. The seal assembly includes a plurality of seal segments. The seal assembly includes at least one seal, such as a brush seal.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: December 5, 2023
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Krishna Chaitanya Veluru, Amit K. Paspulati, Dimitri Zelmer, Anil L. Salunkhe
  • Publication number: 20220307603
    Abstract: A non-contact seal assembly for sealing a circumferential gap between a first machine component and a second machine component which is rotatable relative to the first machine component about a longitudinal axis is provided. The non-contact seal assembly includes a seal carrier, a primary seal that includes a plurality of shoes, a mid plate, a secondary seal, and a front plate. The secondary seal may comprise a plurality of sealing segments. The non-contact seal also includes a plurality of damping elements to damp vibrations of the primary seal during operation.
    Type: Application
    Filed: July 30, 2019
    Publication date: September 29, 2022
    Inventors: Anil L. Salunkhe, Amit K. Paspulati, William J. Curtin
  • Publication number: 20220243594
    Abstract: A gas turbine engine having a pre-swirler adjustability is presented. The pre-swirler includes a pre-swirler insert installed in a component enclosed by a cover. The component includes an inner compressor exit diffusor enclosed by an outer casing or a shaft cover enclosed by the inner compressor exit diffusor. The pre-swirler is adjustable by replacing the pre-swirler insert. An access port including an access window is arranged on the cover. The access port gives access to the pre-swirler insert for replacement through the access window. The access window includes a manhole or combustor assembly installation hole on the outer casing, or a cutout on the inner compressor exit diffusor. The access port allows adjusting the pre-swirler by replacing the pre-swirler insert installed in the component without lifting the cover enclosing the component.
    Type: Application
    Filed: June 4, 2020
    Publication date: August 4, 2022
    Inventors: Grzegorz Blaszczak, Anil L. Salunkhe, Chad W. Heinrich
  • Publication number: 20220228501
    Abstract: A seal assembly in a gas turbine engine is presented. The seal assembly is arranged at a forward side of an inner compressor exit diffusor. The seal assembly is arranged between an outlet guide vane assembly and the forward side of the inner compressor exit diffusor to reduce cooling air leakage therebetween or is arranged between adjacent outlet guide vane assemblies to reduce cooling air leakage therebetween. The seal assembly includes a plurality of seal segments. The seal assembly includes at least one seal, such as a brush seal.
    Type: Application
    Filed: April 24, 2020
    Publication date: July 21, 2022
    Inventors: Krishna Chaitanya Veluru, Amit K. Paspulati, Dimitri Zelmer, Anil L. Salunkhe
  • Publication number: 20210396175
    Abstract: A mid-frame section of a gas turbine engine having a radial clearance adjustability and a method for adjusting a radial clearance to a rotor in a mid-frame section of a gas turbine engine are presented. The mid-frame section includes a radial clearance adjusting assembly arranged at a compressor exit diffusor. The radial clearance adjusting assembly is configured to adjust the radial clearance to the rotor such that the rotor is concentric with respect to components of the mid-frame section, such as the compressor exit diffusor and shaft cover. The radial clearance adjusting assembly provides radial clearance adjustability in the mid-frame section at multiple locations, such as at forward end and aft end of the compressor exit diffusor. The radial clearance adjusting assembly improves efficiency of the gas turbine and reduces service and operating cost of the gas turbine engine.
    Type: Application
    Filed: November 30, 2018
    Publication date: December 23, 2021
    Inventors: Grzegorz Blaszczak, Amit K. Paspulati, Sudeep Bosu, Anil L. Salunkhe, Kashinath Akki
  • Patent number: 10329945
    Abstract: An exhaust gas diffuser for a gas turbine engine whose inlet geometry can be selectively controlled to change the angular orientation of the diffuser at the location where the exhaust gas exits the last stage row of blades of the turbine section of the gas turbine engine. An end portion of the gas diffuser proximate the last stage row of blades can include one or more actuated sections that are independently controlled to change the angular orientation of the inlet geometry of the diffuser. In one embodiment, the angular orientation of the actuated sections is set at the manufacturing level for the service location of the engine. In another embodiment, the angular orientation of the actuated sections is selectively controlled based on the operating conditions of the engine. In another embodiment, the angular orientation of the actuated sections is controlled by pneumatic pressure from a compressor section of the engine.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 25, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Anil L. Salunkhe, Bogdan R. Raica, Christian K. Funk
  • Patent number: 9644497
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 9, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III
  • Patent number: 9598981
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 21, 2017
    Assignee: Siemens Energy, Inc.
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Patent number: 9587519
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 7, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Patent number: 9540956
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: January 10, 2017
    Assignee: Siemens Energy, Inc.
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Publication number: 20160312649
    Abstract: An exhaust gas diffuser for a gas turbine engine whose inlet geometry can be selectively controlled to change the angular orientation of the diffuser at the location where the exhaust gas exits the last stage row of blades of the turbine section of the gas turbine engine. An end portion of the gas diffuser proximate the last stage row of blades can include one or more actuated sections that are independently controlled to change the angular orientation of the inlet geometry of the diffuser. In one embodiment, the angular orientation of the actuated sections is set at the manufacturing level for the service location of the engine. In another embodiment, the angular orientation of the actuated sections is selectively controlled based on the operating conditions of the engine. In another embodiment, the angular orientation of the actuated sections is controlled by pneumatic pressure from a compressor section of the engine.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Inventors: Anil L. Salunkhe, Bogdan R. Raica, Christian K. Funk
  • Patent number: 9366444
    Abstract: A sealing component (61) for a turbine (15) positionable at an interface between a transition section (21) for carrying exhaust gas and a turbine inlet section (32). A U-shaped section (45) includes first and second legs (67, 69). When the sealing component is positioned at the interface, the legs extend about the turbine axis. A seal flange (75) connects to the U-shaped section. The positioned sealing component extends about the axis and in a direction away from the first leg. The seal flange faces the inner surface (76) of the flange. A flexible strip (79), positioned radially outward with respect to the seal flange, extends about the axis and extends along the axis between the U-shaped section and the flange. The flexible strip acts as a spring member pressing against the outer surface (96) of the flange.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: June 14, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Anil L. Salunkhe, Dustin C. Boudin
  • Publication number: 20150143815
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Publication number: 20150143813
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III
  • Publication number: 20150143810
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Publication number: 20150143816
    Abstract: An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Inventors: Anil L. Salunkhe, John A. Orosa, Yevgeniy Shteyman, Matthew R. Porter, Lijuan Han, Matthew J. Delisa, III, Daniel F. Riveros
  • Publication number: 20150128610
    Abstract: A sealing component (61) for a turbine (15) positionable at an interface between a transition section (21) for carrying exhaust gas and a turbine inlet section (32). A U-shaped section (45) includes first and second legs (67, 69). When the sealing component is positioned at the interface, the legs extend about the turbine axis. A seal flange (75) connects to the U-shaped section. The positioned sealing component extends about the axis and in a direction away from the first leg. The seal flange faces the inner surface (76) of the flange. A flexible strip (79), positioned radially outward with respect to the seal flange, extends about the axis and extends along the axis between the U-shaped section and the flange. The flexible strip acts as a spring member pressing against the outer surface (96) of the flange.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Inventors: Anil L. Salunkhe, Dustin C. Boudin