Patents by Inventor Anil U. Mane

Anil U. Mane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220085348
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 17, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Patent number: 11257682
    Abstract: A method of etching an organic or hybrid inorganic/organic material. The method etches molecular layer deposition coatings. An etching cycle comprises a first half reaction exposing the coating to a precursor. A second half reaction exposes a second precursor, removing or etching a portion of the coating.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 22, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Matthias John Young, Steven Payonk Letourneau, Devika Choudhury, Jeffrey W. Elam, Angel Yanguas-Gil, Anil U. Mane
  • Publication number: 20210336240
    Abstract: A method for coating of lithium ion electrode materials via atomic layer deposition. The coated materials may be integrated in part as a dopant in the electrode itself via heat treatment forming a doped lithium electrode.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jason R. Croy, Jeffrey W. Elam, Arturo Gutierrez, Jihyeon Gim, Devika Choudhury, Eungje Lee, Hakim Iddir
  • Patent number: 11158856
    Abstract: An electrode comprises an electrode core. A composite bilayer coating is conformally disposed on the electrode core. The composite bilayer coating comprises a first layer disposed on at least a portion of the electrode core. The first layer comprises a metal fluoride, a metal oxide or a metal sulfide. A second layer is disposed on the first layer and comprises a metal fluoride, a metal oxide or a metal sulfide.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 26, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jason R. Croy, Jeffrey W. Elam, Mahalingam Balasubramanian
  • Patent number: 11142824
    Abstract: An ultra-thin film transition metal dichalcogenide (“TMD”) supported on a support. The TMD is formed from a metal grown by atomic layer deposition (“ALD”) on a substrate. The metal is sulphurized to produce a TMD ultra-thin layer.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: October 12, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Devika Choudhury, Jeffrey W. Elam, Steven Payonk Letourneau
  • Patent number: 11121355
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 14, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Patent number: 11111578
    Abstract: A secondary electron emissive coating. The coating is formed by atomic layer deposition of CaF2 on a substrate by ALD half cycle exposure of an alkaline metal amidinate and ALD half cycle exposure of a fluorinated compound, where the deposition occurs at a reaction temperature greater than a highest sublimation temperature of the first metal precursor and the second metal precursor and less than 50° C. above the highest sublimation temperature.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: September 7, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane, Maximillian Gebhard
  • Publication number: 20210254209
    Abstract: A secondary electron emissive coating. The coating is formed by atomic layer deposition of CaF2 on a substrate by ALD half cycle exposure of an alkaline metal amidinate and ALD half cycle exposure of a fluorinated compound, where the deposition occurs at a reaction temperature greater than a highest sublimation temperature of the first metal precursor and the second metal precursor and less than 50° C. above the highest sublimation temperature.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Jeffrey W. Elam, Anil U. Mane, Maximillian Gebhard
  • Publication number: 20210238769
    Abstract: Coated nanofibers and methods for forming the same. A magnetic nanofiber is formed and a barrier coating is deposited on the magnetic nanofiber by atomic layer deposition (“ALD”) process. The coated nanofiber may include a reduced magnetic nanostructure and a barrier coating comprising a first oxide coating on the nanofiber, the coating being non-reactive with the magnetic polymer nanofiber, the barrier coating have a thickness of 2 nm to 12 nm.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Yuepeng Zhang, Devika Choudhury, Jeffrey W. Elam, Kaizhong Gao, John N. Hryn
  • Patent number: 11065334
    Abstract: A method comprises providing a plurality of nanostructures comprising a base material. The plurality of nanostructures are exposed to a first material at a first deposition temperature. The plurality of nanoparticles are exposed to a second material at a second deposition temperature, and exposed to a Boron-10 (10B) containing material at a third deposition temperature so as to form a 10B-metal oxide based composite nanostructure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 20, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20210098262
    Abstract: A method of etching an organic or hybrid inorganic/organic material. The method etches molecular layer deposition coatings. An etching cycle comprises a first half reaction exposing the coating to a precursor. A second half reaction exposes a second precursor, removing or etching a portion of the coating.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Matthias John Young, Steven Payonk Letourneau, Devika Choudhury, Jeffrey W. Elam, Angel Yanguas-Gil, Anil U. Mane
  • Patent number: 10954139
    Abstract: A method of fabricating an oleophilic foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD) or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with an oleophilic material.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 23, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Anil U. Mane
  • Patent number: 10870917
    Abstract: A method of fabricating an foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD), or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with a material.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: December 22, 2020
    Assignee: UChicago Argonne, LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Anil U. Mane, Seth W. Snyder
  • Patent number: 10867768
    Abstract: An enhanced electron amplifier structure includes a microporous substrate having a front surface and a rear surface, the microporous substrate including at least one channel extending substantially through the substrate between the front surface and the rear surface, an ion diffusion layer formed on a surface of the channel, the ion diffusion layer comprising a metal oxide, a resistive coating layer formed on the first ion diffusion layer, an emissive coating layer formed on the resistive coating layer, and an optional ion feedback layer formed on the front surface of the structure. The emissive coating produces a secondary electron emission responsive to an interaction with a particle received by the channel. The ion diffusion layer, the resistive coating layer, the emissive coating layer, and the ion feedback layer are independently deposited via chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 15, 2020
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20200378003
    Abstract: ALD and p-CVD methods to generate MgB2 and MgB2-containing films in the growth temperature range of 250-300° C. The thermal ALD and p-CVD methods shown herein ensure that the high-temperature-induced roughening, which causes high surface resistances in MgB2 coatings grown by the mentioned conventional techniques, is avoided. The MgB2 and MgB2-containing films exhibit superconductive properties at above 20° K.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 3, 2020
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: David Joseph Mandia, Angel Yanguas-Gil, Devika Choudhury, Aliraeza Nassiri, Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20200340119
    Abstract: An ultra-thin film transition metal dichalcogenide (“TMD”) supported on a support. The TMD is formed from a metal grown by atomic layer deposition (“ALD”) on a substrate. The metal is sulphurized to produce a TMD ultra-thin layer.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Devika Choudhury, Jeffrey W. Elam, Steven Payonk Letourneau
  • Patent number: 10796874
    Abstract: The invention provides a gain device having a plurality of channels having a polygonal shape with four or more sides. The invention also provides a method for producing microchannel plates (MCPs) having the steps of providing a pre-polymer; and directing a laser over the pre-polymer into a pre-determined pattern. Also provided is method for efficiently 3D printing an object.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: October 6, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Robert G. Wagner, Michael J. Pellin, Howard Nicholson, Lei Xia, Jingbo Wang, Junqi Xie, Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20200147218
    Abstract: A method comprises providing a plurality of nanostructures comprising a base material. The plurality of nanostructures are exposed to a first material at a first deposition temperature. The plurality of nanoparticles are exposed to a second material at a second deposition temperature, and exposed to a Boron-10 (10B) containing material at a third deposition temperature so as to form a 10B-metal oxide based composite nanostructure.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Publication number: 20200039845
    Abstract: A method of fabricating an oleophilic foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD) or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with an oleophilic material.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Anil U. Mane
  • Patent number: 10550010
    Abstract: A method of fabricating an oleophilic foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD) or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with an oleophilic material.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 4, 2020
    Assignee: UChicago Argonne, LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Anil U. Mane