Patents by Inventor Anil Vasudeo Virkar

Anil Vasudeo Virkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7311754
    Abstract: A method for synthesizing nanosize metallic powders can include providing a metallic precursor. The metallic precursor can include a metal alloy formed having a fugitive constituent and a target metal. The fugitive constituent and target metal are chosen such that the fugitive constituent can be selectively dissolved or removed by leaching with an appropriate solvent while leaving the target metal undissolved. The fugitive constituent can be leached from the metallic precursor to leave a metallic residue which is a mass of nanosize metallic particles made substantially of the target metal. The nanosize metallic particles can then be recovered from the metallic residue either merely by removing the solvent and/or breaking up the mass of nanosize metallic particles. The disclosed methods allow for a convenient avenue for production of nanosize particles from readily formed materials for use in a wide variety of potential industrial and commercial applications.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: December 25, 2007
    Assignee: University of Utah Research Foundation
    Inventors: Anil Vasudeo Virkar, Wensheng Wang
  • Patent number: 6803027
    Abstract: A process is disclosed for forming a nanosize ceramic powder. A precursor ceramic material is formed of a fugitive constituent and a non-soluble constituent in a single phase. The precursor is contacted with a selective solvent (water, acid, etc.) to form a solution of the fugitive constituent in the solvent and a residue of the non-soluble constituent. The precursor is sufficiently reactive with the solvent to form the solution of the fugitive constituent in the solvent and form the nondissolved residue of the non-soluble constituent. The precursor material and the non-soluble residue are sufficiently insoluble in the solvent such that there is insufficient precursor material and non-soluble residue in solution to deposit and precipitate upon the residue of the non-soluble-constituent.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: October 12, 2004
    Assignee: University of Utah Research Foundation
    Inventors: Anil Vasudeo Virkar, Sanjeevani Vidyadhar Bhide
  • Patent number: 6770395
    Abstract: A metallic interconnect for use in planar solid oxide fuel cell (SOFC) stacks with metal gauzes disposed in border pieces at the cathodes and anodes providing the electrical conduction between the cell and an interconnect foil and also providing structure for directing gas across the cell surface.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: August 3, 2004
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, David W. Prouse, Paul C. Smith, Guang-Young Lin
  • Patent number: 6632763
    Abstract: A ceramic composite containing alkali-metal-beta- or beta″-alumina and an oxygen-ion conductor is fabricated by converting alpha-alumina to alkali-metal-beta- or beta″-alumina. A ceramic composite with continuous phases of alpha-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-beta- or beta″-alumina converted from &agr;-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where alpha-alumina is converted to alkali-metal-beta- or beta″-alumina. A stabilizer for alkali-metal-beta″-alumina is preferably introduced into the &agr;-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the alpha-alumina to an alkali-metal-beta″-alumina.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: October 14, 2003
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung
  • Publication number: 20030087752
    Abstract: A ceramic composite containing alkali-metal-beta- or beta″-alumina and an oxygen-ion conductor is fabricated by converting alpha-alumina to alkali-metal-beta- or beta″-alumina. A ceramic composite with continuous phases of alpha-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-beta- or beta″-alumina converted from &agr;-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where alpha-alumina is converted to alkali-metal-beta- or beta″-alumina. A stabilizer for alkali-metal-beta″-alumina is preferably introduced into the &agr;-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the alpha-alumina to an alkali-metal-beta″-alumina.
    Type: Application
    Filed: December 2, 2002
    Publication date: May 8, 2003
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung
  • Patent number: 6537940
    Abstract: A ceramic composite containing alkali-metal-&bgr;- or &bgr;″-alumina and an oxygen-ion conductor is fabricated by converting &agr;-alumina to alkali-metal-&bgr;- or &bgr;″-alumina. A ceramic composite with continuous phases of &agr;-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-&bgr;- or &bgr;″-alumina converted from &agr;-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where &agr;-alumina is converted to alkali-metal-&bgr;- or &bgr;″-alumina. A stabilizer for alkali-metal-&bgr;″-alumina is preferably introduced into the &agr;-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the &agr;-alumina to an alkali-metal-&bgr;″-alumina.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: March 25, 2003
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung
  • Publication number: 20020048700
    Abstract: A metallic interconnect for use in planar solid oxide fuel cell (SOFC) stacks with metal gauzes disposed in border pieces at the cathodes and anodes providing the electrical conduction between the cell and an interconnect foil and also providing structure for directing gas across the cell surface.
    Type: Application
    Filed: October 10, 2001
    Publication date: April 25, 2002
    Applicant: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, David W. Prouse, Paul C. Smith, Guang-Young Lin
  • Patent number: 6284692
    Abstract: A t′-phase zirconia shapes with superior properties are made by forming a zirconia powder containing a rare-earth-oxide dopant into sintered bodies. The sintered bodies are heat treated in an oxygen atmosphere at a temperature high enough to form a cubic phase. The heated body is then cooled rapidly to form a t′-phase. The t′-phase is characterized with a large grain size, is resistant to transformation, low temperature degradation, and has excellent toughness, and creep resistance. Rare earth-oxide dopants include yttria, scandia, erbia, and ceria. For yttria doped materials, the sintered body is doped with between 2.5 and 5 mole percent yttria.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: September 4, 2001
    Assignee: Materials and Systems Research, Inc.
    Inventors: Jan-Fong Jue, Anil Vasudeo Virkar
  • Patent number: 6168745
    Abstract: A t′-phase zirconia shapes with superior properties are made by forming a zirconia powder containing a rare-earth-oxide dopant into sintered bodies. The sintered bodies are heat treated in an oxygen atmosphere at a temperature high enough to form a cubic phase. The heated body is then cooled rapidly to form a t′-phase. The t′-phase is characterized with a large grain size, is resistant to transformation, low temperature degradation, and has excellent toughness, and creep resistance. Rare earth-oxide dopants include yttria, scandia, erbia, and ceria. For yttria doped materials, the sintered body is doped with between 2.5 and 5 mole percent yttria.
    Type: Grant
    Filed: November 28, 1998
    Date of Patent: January 2, 2001
    Assignee: Materials and Systems Research, Inc.
    Inventors: Jan-Fong Jue, Anil Vasudeo Virkar
  • Patent number: 6117807
    Abstract: A ceramic composite containing alkali-metal-.beta.- or .beta."-alumina and an oxygen-ion conductor is fabricated by converting .alpha.-alumina to alkali-metal-.beta.- or .beta."-alumina. A ceramic composite with continuous phases of .alpha.-alumina and the oxygen-ion conducting ceramic, such as zirconia, is exposed to a vapor containing an alkali-metal oxide, such as an oxide of sodium or potassium. Alkali metal ions diffuse through alkali-metal-.beta.- or .beta."-alumina converted from .alpha.-alumina and oxygen ions diffuse through the oxygen-ion conducting ceramic to a reaction front where .alpha.-alumina is converted to alkali-metal-.beta.- or .beta."-alumina. A stabilizer for alkali-metal-.beta."-alumina is preferably introduced into the .alpha.-alumina/oxygen-ion conductor composite or introduced into the vapor used to convert the .alpha.-alumina to an alkali-metal-.beta."-alumina.
    Type: Grant
    Filed: January 2, 1998
    Date of Patent: September 12, 2000
    Assignee: Materials and Systems Research, Inc.
    Inventors: Anil Vasudeo Virkar, Jan-Fong Jue, Kuan-Zong Fung