Patents by Inventor Ankit Vora

Ankit Vora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151971
    Abstract: A method of planarizing an overcoat layer on a surface-relief grating includes dispensing a layer of a resin material that is curable by heat or electromagnetic radiation on a surface-relief grating that includes a plurality of grating grooves, pressing the layer of the resin material using a planar imprint stamp, curing the resin material in the layer of the resin material, and detaching the planar imprint stamp from the layer of the resin material. In one example, a thickness of the overcoat layer on top of grating ridges of the surface-relief grating is equal to or less than 20 nm, and a surface peak-to-valley height of a top surface of the overcoat layer is equal to or less than 5 nm.
    Type: Application
    Filed: January 10, 2022
    Publication date: May 9, 2024
    Inventors: Ankit VORA, Keren ZHANG, Matthew E. COLBURN, Feyza DUNDAR ARISOY, Igor ABRAMSON
  • Patent number: 11914378
    Abstract: A computer-implemented method for controlling a vehicle includes receiving, via a processor, from two or more IX control devices disposed at a two or more stationary positions having known latitudes longitudes and orientations, first sensory data identifying the position and dimensions of a feature in a mapped region. The processor generates a plurality of IX nodes based on the first sensory data received from the IX control devices, and receives LiDAR point cloud that includes LiDAR and other vehicle sensory device data such as Inertial Measurement Unit (IMU) data received from a Vehicle (AV) driving in the mapped region. The LiDAR point cloud includes a simultaneous localization and mapping (SLAM) map having second dimension information and second position information associated with the feature in the mapped region. The processor generates, without GPS and/or real-time kinematics information, an optimized High-Definition (HD) map having Absolute accuracy using batch optimization and map smoothing.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: February 27, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Ankit Vora, Siddharth Agarwal, Krishanth Krishnan
  • Patent number: 11826876
    Abstract: In one implementation, a method of forming a porous polishing pad is provided. The method comprises depositing a plurality of composite layers with a 3D printer to reach a target thickness. Depositing the plurality of composite layers comprises dispensing one or more droplets of a curable resin precursor composition onto a support. Depositing the plurality of composite layers further comprises dispensing one or more droplets of a porosity-forming composition onto the support, wherein at least one component of the porosity-forming composition is removable to form the pores in the porous polishing pad.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Ankit Vora, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20230294239
    Abstract: Methods and formulations for manufacturing polishing articles used in polishing processes are provided. In one implementation, a UV curable resin precursor composition is provided. The UV curable resin precursor comprises a precursor formulation. The precursor formulation comprises a first resin precursor component that comprises a semi-crystalline radiation curable oligomeric material, wherein the semi-crystalline radiation curable oligomeric material is selected from a semi-crystalline aliphatic polyester urethane acrylate, a semi-crystalline aliphatic polycarbonate urethane acrylate, a semi-crystalline aliphatic polyether urethane acrylate, or combinations thereof. The precursor formulation further comprises a second resin precursor component that comprises a monofunctional or multifunctional acrylate monomer.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Sivapackia GANAPATHIAPPAN, Ankit VORA, Boyi FU, Venkat HARIHARAN, Mayu YAMAMURA, Mario CORNEJO, Igor ABRAMSON, Mo YANG, Daniel REDFIELD, Rajeev BAJAJ, Nag B. PATIBANDLA
  • Patent number: 11709422
    Abstract: Gray-tone lithography techniques for controlling the thickness profile of an overcoat layer on a surface-relief grating that has a non-uniform grating parameter (e.g., depth, duty cycle, or period), compensating for the non-uniform etch rate in a large area, defining etch/block regions, and/or controlling the thickness of the grating layer.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 25, 2023
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventors: Elliott Franke, Nihar Ranjan Mohanty, Ankit Vora, Austin Lane, Matthew E. Colburn
  • Patent number: 11685014
    Abstract: Methods and formulations for manufacturing polishing articles used in polishing processes are provided. In one implementation, a UV curable resin precursor composition is provided. The UV curable resin precursor comprises a precursor formulation. The precursor formulation comprises a first resin precursor component that comprises a semi-crystalline radiation curable oligomeric material, wherein the semi-crystalline radiation curable oligomeric material is selected from a semi-crystalline aliphatic polyester urethane acrylate, a semi-crystalline aliphatic polycarbonate urethane acrylate, a semi-crystalline aliphatic polyether urethane acrylate, or combinations thereof. The precursor formulation further comprises a second resin precursor component that comprises a monofunctional or multifunctional acrylate monomer.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Ankit Vora, Boyi Fu, Venkat Hariharan, Mayu Yamamura, Mario Cornejo, Igor Abramson, Mo Yang, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla
  • Publication number: 20230160820
    Abstract: A method is provided. The method includes forming a shrink material layer over a substrate including a photoresist pattern. The method also includes exposing the substrate with the shrink material layer to an activating radiation via a grey-tone mask that provides a predetermined light transmittance profile for the activating radiation. The method also includes removing at least a portion of the shrink material layer.
    Type: Application
    Filed: October 18, 2022
    Publication date: May 25, 2023
    Inventors: Austin LANE, Ankit VORA, Richard FARRELL, Keren ZHANG
  • Publication number: 20230125794
    Abstract: The present disclosure relates to systems and methods of making polymeric optical layers for optical layering applications. In an aspect, a waveguide device for a head mounted display is provided. The waveguide device may include a waveguide die having a first refractive index range and a polymeric optical layer. The polymeric optical layer may include a second refractive index range that is different from the first refractive index range and a thiol-containing polymer. For example, the thiol-containing polymer may include thiourethane. In some embodiments, the thiol-containing polymer may be formed from a monomer mixture including a thiol-containing compound and an isocyanate. For example, the thiol-containing compound may include 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (MDTODT) and/or the isocyanate may include m-xylylene diisocyanate (XDI). In some embodiments, the monomer mixture may include a second thiol-containing compound, such as, for example, 1,3-benzene dithiol (1,3-BDT).
    Type: Application
    Filed: March 22, 2022
    Publication date: April 27, 2023
    Applicant: META PLATFORMS TECHNOLOGIES, LLC
    Inventors: Marvin Dion Alim, Richard Farrell, Matthew E. Colburn, Ankit Vora, Austin Lane
  • Publication number: 20230130753
    Abstract: Disclosed herein are techniques for fabricating a straight or slanted surface-relief grating with a uniform or non-uniform grating depth. According to certain embodiments, a gray-tone photoresist includes a novolac resin, a diazonaphthoquinone (DNQ) dissolution inhibitor, and one or more crosslinking agents for crosslinking the novolac resin at an elevated temperature to increase a glass transition temperature of the gray-tone photoresist and/or lower an etch rate of the gray-tone photoresist. After gray-tone photo exposure and development, the gray-tone photoresist is baked at the elevated temperature to crosslink. The crosslinked gray-tone photoresist has a higher density and a higher glass transition temperature, and thus would not become flowable to cause ripples or other surface roughness during the etching.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 27, 2023
    Inventors: Keren ZHANG, Xu ZHANG, Feyza DUNDAR ARISOY, Joshua Andrew KAITZ, Ankit VORA, Elliott FRANKE, John SPORRE
  • Publication number: 20230041380
    Abstract: A nanocomposite includes a plurality of nanoparticles, where each nanoparticle of the plurality of nanoparticles includes a TiO2 nanoparticle core characterized by a diameter between about 1 nm and about 20 nm and a surface .OH density below about 6.OH/nm2, and a nanoparticle shell conformally formed on surfaces of the TiO2 nanoparticle core. The nanoparticle shell is continuous and is thinner than about 2 nm. The nanoparticle shell includes a transparent material with a refractive index greater than about 1.7 for visible light. A valence band of the nanoparticle shell is more than about 0.1 eV lower than a valence band of the TiO2 nanoparticle core. A conduction band of the nanoparticle shell is more than about 0.5 eV higher than a conduction band of the TiO2 nanoparticle core.
    Type: Application
    Filed: July 26, 2022
    Publication date: February 9, 2023
    Inventors: Alejo LIFSCHITZ ARRIBIO, Ankit VORA, Keren ZHANG, Jonathan William ONORATO, Vivek GUPTA
  • Publication number: 20230037929
    Abstract: Layered waveguides, multi-layer waveguide displays with layered waveguides, and methods of fabricating layered waveguides with selective bonding material deposition and/or patterning.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 9, 2023
    Inventors: Austin LANE, Richard FARRELL, Ankit VORA
  • Patent number: 11543584
    Abstract: The disclosure provides high refractive index ceramic material nanoimprint lithography (NIL) gratings having a relatively lower amount of carbon compared to traditional NIL gratings, and methods of making and using thereof, and devices including such gratings. The ceramic material includes one or more of titanium oxide, zirconium oxide, hafnium oxide, tungsten oxide, zinc tellurium, gallium phosphide, or any combination or derivative thereof.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: January 3, 2023
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventors: Giuseppe Calafiore, Tingling Rao, Ankit Vora, Peter Topalian
  • Publication number: 20220373725
    Abstract: An optical device includes an overcoat layer on a surface-relief grating. The overcoat layer is formed by a process including: depositing a layer of a first resin material that is curable by heat or electromagnetic radiation on a surface-relief grating that includes a plurality of grating ridges and a plurality of grating grooves to at least partially fill the plurality of grating grooves, curing the layer of the first resin material, depositing a layer of a second resin material that is curable by heat or electromagnetic radiation and has a higher flowability than the first resin material on the layer of the first resin material, annealing the layer of the second resin material to allow the second resin material to flow and form a planar top surface, and curing the layer of the second resin material.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Inventors: Keren ZHANG, Ankit VORA
  • Publication number: 20220374016
    Abstract: A computer-implemented method for controlling a vehicle includes receiving, via a processor, from two or more IX control devices disposed at a two or more stationary positions having known latitudes longitudes and orientations, first sensory data identifying the position and dimensions of a feature in a mapped region. The processor generates a plurality of IX nodes based on the first sensory data received from the IX control devices, and receives LiDAR point cloud that includes LiDAR and other vehicle sensory device data such as Inertial Measurement Unit (IMU) data received from a Vehicle (AV) driving in the mapped region. The LiDAR point cloud includes a simultaneous localization and mapping (SLAM) map having second dimension information and second position information associated with the feature in the mapped region. The processor generates, without GPS and/or real-time kinematics information, an optimized High-Definition (HD) map having Absolute accuracy using batch optimization and map smoothing.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 24, 2022
    Applicant: Ford Global Technologies, LLC
    Inventors: Ankit Vora, Siddharth Agarwal, Krishanth Krishnan
  • Publication number: 20220332896
    Abstract: The disclosure provides recording materials including halogenated derivatized monomers and polymers for use in volume Bragg gratings, including, but not limited to, volume Bragg gratings for holography applications. Several structures are disclosed for halogenated derivatized monomers and polymers for use in Bragg gratings applications, leading to materials with higher refractive index, low birefringence, and high transparency. The disclosed halogenated derivatized monomers and polymers thereof can be used in any volume Bragg gratings materials, including two-stage polymer materials where a matrix is cured in a first step, and then the volume Bragg grating is written by way of a second curing step of a monomer.
    Type: Application
    Filed: March 4, 2022
    Publication date: October 20, 2022
    Inventors: Lafe Joseph PURVIS, II, Marvin Dion ALIM, Austin LANE, Ankit VORA
  • Publication number: 20220334302
    Abstract: An optical device includes a substrate, a surface-relief grating including grooves and ridges formed on or in the substrate, and an overcoat layer in the grooves of the surface-relief grating. The ridges of the surface-relief grating or the overcoat layer includes a plurality of clusters of metal oxide (e.g., TiO2 or NbOx) nanoparticles. Each cluster of the plurality of clusters of metal oxide nanoparticles includes metal oxide nanoparticles dispersed in an inorganic barrier that isolates the metal oxide nanoparticles from other materials of the optical device. The ridges of the surface-relief grating or the overcoat layer is made of a resin material that includes a resin with inorganic content, and/or TiOx or NbOx nanoparticles including inorganic-containing ligands. A high-energy treatment process can remove organics surrounding the metal oxide nanoparticles and form the barrier layers that surround clusters of metal oxide nanoparticles.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 20, 2022
    Inventors: Keren ZHANG, Sara AZARI, Feyza DUNDAR ARISOY, Ankit VORA
  • Publication number: 20220334289
    Abstract: An optical device includes a substrate, a first surface-relief grating including grooves and ridges formed on or in the substrate, a first overcoat layer in the grooves of the first surface-relief grating, and a first antireflective layer on the first overcoat layer. The ridges of the first surface-relief grating include high-refractive index, photoactive metal oxide nanoparticles and a material of the first overcoat layer in regions between the metal oxide nanoparticles, or the first overcoat layer includes the metal oxide nanoparticles and a material of the first antireflective layer in regions between the metal oxide nanoparticles. Methods of fabricating the optical device are also described.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 20, 2022
    Inventors: Keren ZHANG, Sara AZARI, Austin LANE, Feyza DUNDAR ARISOY, Ankit VORA, Nihar Ranjan MOHANTY, Vivek GUPTA
  • Publication number: 20220206232
    Abstract: A multi-layer waveguide display includes a base waveguide layer, one or more grating couplers on one or two surfaces of the base waveguide layer, an overcoat layer on each grating coupler of the one or more grating couplers and filling grating grooves of the grating coupler, and a first waveguide layer stack on a first side of the base waveguide layer. The first waveguide layer stack includes one or more polymer layers. Each of the one or more polymer layers is characterized by a respective refractive index lower than the refractive index of the base waveguide layer. Each polymer layer is formed in a plurality of process cycles, where each process cycle includes dispensing a two-dimensional array of droplets of a resin material to form a thin layer and cross-linking the thin layer to form a sublayer of the polymer layer.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 30, 2022
    Inventors: Keren ZHANG, Ankit VORA, Igor ABRAMSON, Nihar Ranjan MOHANTY
  • Publication number: 20220204790
    Abstract: A formulation for inkjet printing includes one or more solvents and a plurality of nanoparticles mixed with the one or more solvents. The plurality of nanoparticles has a first refractive index greater than 1.9. A method includes depositing a layer of the formulation by inkjet printing onto a substrate having a non-flat. The method thereby forms coating of the formulation having a first surface conforming to the non-flat surface of the substrate and a second surface, opposite to the first surface, being a flat surface. An optical device includes a surface relief grating and a coating layer disposed on the surface relief grating. The coating layer includes a plurality of nanoparticles having a refractive index greater than 1.45 and a resin. The plurality of nanoparticles has functional ligands cross-linked with the resin.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 30, 2022
    Inventors: Keren ZHANG, Ankit VORA, Igor ABRAMSON, Sara AZARI
  • Publication number: 20220082936
    Abstract: Gray-tone lithography techniques for controlling the thickness profile of an overcoat layer on a surface-relief grating that has a non-uniform grating parameter (e.g., depth, duty cycle, or period), compensating for the non-uniform etch rate in a large area, defining etch/block regions, and/or controlling the thickness of the grating layer.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Elliott FRANKE, Nihar Ranjan MOHANTY, Ankit VORA, Austin LANE, Matthew E. COLBURN