Patents by Inventor Anne Vandooren

Anne Vandooren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197522
    Abstract: The disclosure relates to a method for forming a semiconductor device. The method includes forming a device layer stack on a substrate, the device layer stack having a first sub-stack comprising a first sacrificial layer and on the first sacrificial layer a channel layer defining a topmost layer of the first sub-stack, and a second sub-stack on the first sub-stack and including a first sacrificial layer defining a bottom layer of the second sub-stack, and a second sacrificial layer on the first sacrificial layer, wherein said first sacrificial layers are formed of a first sacrificial semiconductor material, the second sacrificial layer is formed of a second sacrificial semiconductor material, and the channel layer is formed of a semiconductor channel material, and wherein a thickness of the second sub-stack exceeds a thickness of the first sacrificial layer of the first sub-stack.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Boon Teik Chan, Anne Vandooren, Julien Ryckaert, Naoto Horiguchi
  • Publication number: 20230197830
    Abstract: A method for forming a stacked field-effect transistor device is provided.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Inventors: Boon Teik Chan, Anne Vandooren, Naoto Horiguchi
  • Publication number: 20230197726
    Abstract: Example embodiments relate to methods for forming a stacked FET device. An example method includes forming a bottom FET device that includes a source, a drain, at least one channel layer between the source and drain, and a bottom gate electrode arranged along the at least one channel layer. The method also includes forming a bonding layer over the bottom FET. Additionally, the method includes forming a top FET device on the bonding layer. Forming the top FET device includes forming a device layer structure. The device layer structure includes at least one channel layer of a channel semiconductor material and a top sacrificial layer of a sacrificial semiconductor material. Further, the method includes replacing the top sacrificial layer with a dummy layer of a dielectric dummy material, forming a gate-to-gate contact trench, depositing gate electrode material, and forming a source and a drain of the top FET device.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 22, 2023
    Inventors: Book Teik Chan, Dunja Radisic, Anne Vandooren, Juergen Boemmels
  • Publication number: 20190273115
    Abstract: A sequential integration process is described. An example process involves forming a wafer stack by bonding a first wafer to a second wafer with a front side of the first wafer facing a front side of the second wafer, the first wafer including a first device region formed on the front side of the first wafer and including a set of semiconductor devices. The example process involves, subsequent to forming the wafer stack, forming a second device region on a back side of the first wafer, the second device region including a set of semiconductor devices. The example process involves forming at least one interconnection layer on the second device region for electrically interconnecting the semiconductor devices of the second device region. The example process also involves forming at least one via extending through the wafer stack from the at least one interconnection layer and through the first wafer.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 5, 2019
    Applicant: IMEC VZW
    Inventors: Amey Mahadev Walke, Anne Vandooren, Nadine Collaert
  • Patent number: 10367031
    Abstract: A sequential integration process is described. An example process involves forming a wafer stack by bonding a first wafer to a second wafer with a front side of the first wafer facing a front side of the second wafer, the first wafer including a first device region formed on the front side of the first wafer and including a set of semiconductor devices. The example process involves, subsequent to forming the wafer stack, forming a second device region on a back side of the first wafer, the second device region including a set of semiconductor devices. The example process involves forming at least one interconnection layer on the second device region for electrically interconnecting the semiconductor devices of the second device region. The example process also involves forming at least one via extending through the wafer stack from the at least one interconnection layer and through the first wafer.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 30, 2019
    Assignee: IMEC VZW
    Inventors: Amey Mahadev Walke, Anne Vandooren, Nadine Collaert
  • Publication number: 20180076260
    Abstract: A sequential integration process is described. An example process involves forming a wafer stack by bonding a first wafer to a second wafer with a front side of the first wafer facing a front side of the second wafer, the first wafer including a first device region formed on the front side of the first wafer and including a set of semiconductor devices. The example process involves, subsequent to forming the wafer stack, forming a second device region on a back side of the first wafer, the second device region including a set of semiconductor devices. The example process involves forming at least one interconnection layer on the second device region for electrically interconnecting the semiconductor devices of the second device region. The example process also involves forming at least one via extending through the wafer stack from the at least one interconnection layer and through the first wafer.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Applicant: IMEC VZW
    Inventors: Amey Mahadev Walke, Anne Vandooren, Nadine Collaert
  • Patent number: 9419114
    Abstract: A tunnel field-effect transistor (TFET) device is provided comprising a semiconductor substrate and a fin structure disposed thereon. The fin structure comprises a channel region and a source region disposed on the channel region. The TFET further comprises a drain region contacting the channel region, wherein the source region and the drain region are of opposite conductivity type. The TFET also comprises a pocket layer covering a gate interface portion of the source region and contacting at least part of the channel region. The TFET further comprises a gate dielectric layer covering the pocket layer and a gate electrode covering the gate dielectric layer. The gate interface portion of the source region comprises at least three mutually non-coplanar surface segments. A method for manufacturing such a TFET device is also provided.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: August 16, 2016
    Assignees: IMEC VZW, Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Amey Mahadev Walke, Anne VanDooren, Krishna Kumar Bhuwalka
  • Publication number: 20150206958
    Abstract: A tunnel field-effect transistor (TFET) device is provided comprising a semiconductor substrate and a fin structure disposed thereon. The fin structure comprises a channel region and a source region disposed on the channel region. The TFET further comprises a drain region contacting the channel region, wherein the source region and the drain region are of opposite conductivity type. The TFET also comprises a pocket layer covering a gate interface portion of the source region and contacting at least part of the channel region. The TFET further comprises a gate dielectric layer covering the pocket layer and a gate electrode covering the gate dielectric layer. The gate interface portion of the source region comprises at least three mutually non-coplanar surface segments. A method for manufacturing such a TFET device is also provided.
    Type: Application
    Filed: January 16, 2015
    Publication date: July 23, 2015
    Inventors: Amey Mahadev Walke, Anne VanDooren, Krishna Kumar Bhuwalka
  • Patent number: 8415209
    Abstract: The present disclosure provides a method for manufacturing at least one nanowire Tunnel Field Effect Transistor (TFET) semiconductor device. The method comprises providing a stack comprising a layer of channel material with on top thereof a layer of sacrificial material, removing material from the stack so as to form at least one nanowire from the layer of channel material and the layer of sacrificial material, and replacing the sacrificial material in the at least one nanowire by heterojunction material. A method according to embodiments of the present disclosure is advantageous as it enables easy manufacturing of complementary TFETs.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 9, 2013
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Rita Rooyackers, Daniele Leonelli, Anne Vandooren, Anne S. Verhulst, Roger Loo, Stefan De Gendt
  • Publication number: 20110253981
    Abstract: The present disclosure provides a method for manufacturing at least one nanowire Tunnel Field Effect Transistor (TFET) semiconductor device. The method comprises providing a stack comprising a layer of channel material with on top thereof a layer of sacrificial material, removing material from the stack so as to form at least one nanowire from the layer of channel material and the layer of sacrificial material, and replacing the sacrificial material in the at least one nanowire by heterojunction material. A method according to embodiments of the present disclosure is advantageous as it enables easy manufacturing of complementary TFETs.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicants: Katholieke Universiteit Leuven, K.U. LEUVEN R&D, IMEC
    Inventors: Rita Rooyackers, Daniele Leonelli, Anne Vandooren, Anne S. Verhulst, Roger Loo, Stefan De Gendt
  • Publication number: 20050101069
    Abstract: A semiconductor fabrication process includes forming a silicon fin overlying a substrate. A gate dielectric is formed on primary faces of the fin. A gate electrode is formed over at least two faces of the fin. Dielectric spacers are then selectively formed in close proximity and confined to the sidewalls of the gate electrode thereby leaving a majority of the primary fin faces exposed. Thereafter a silicide is formed on the primary fin faces. The forming of the gate electrode in one embodiment includes depositing polysilicon over the fin and substrate, depositing a capping layer over the polysilicon, patterning photoresist over the capping layer and etching through the capping layer and the polysilicon with the patterned photoresist in place wherein the etching produces a polysilicon width that is less than a width of the capping layer to create voids under the capping layer adjacent sidewalls of the polysilicon where the confined spacers can be formed.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 12, 2005
    Inventors: Leo Mathew, Rode Mora, Bich-Yen Nguyen, Tab Stephens, Anne Vandooren
  • Patent number: 6753216
    Abstract: A semiconductor fabrication process and structure in which a dielectric structure (106) is formed upon a substrate (102). Silicon is then deposited and processed to form a crystalline silicon wall (118) that envelopes the dielectric structure (106) and is physically and electrically isolated from the substrate (102). A gate dielectric film (130) is formed over at least two surfaces of the silicon wall (118) and a gate electrode film (132) is formed over the gate dielectric (130). The gate electrode film (132) is then patterned followed by conventional source/drain implant processing. Portions of the silicon wall (118) disposed on either side of the gate electrode (140) may then be contacted to form source/drain structures (150). In this manner, the portion of the silicon wall (118) covered by the gate electrode (140) comprises a transistor channel region having multiple surfaces controlled by gate electrode (140).
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 22, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Bich-Yen Nguyen, Daniel Thanh-Khac Pham, Anne Vandooren
  • Publication number: 20040084674
    Abstract: A semiconductor fabrication process and structure in which a dielectric structure (106) is formed upon a substrate (102). Silicon is then deposited and processed to form a crystalline silicon wall (118) that envelopes the dielectric structure (106) and is physically and electrically isolated from the substrate (102). A gate dielectric film (130) is formed over at least two surfaces of the silicon wall (118) and a gate electrode film (132) is formed over the gate dielectric (130). The gate electrode film (132) is then patterned followed by conventional source/drain implant processing. Portions of the silicon wall (118) disposed on either side of the gate electrode (140) may then be contacted to form source/drain structures (150). In this manner, the portion of the silicon wall (118) covered by the gate electrode (140) comprises a transistor channel region having multiple surfaces controlled by gate electrode (140).
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Leo Mathew, Bich-Yen Nguyen, Daniel Thanh-Khac Pham, Anne Vandooren
  • Patent number: 6689676
    Abstract: A method for providing gates of transistors with at least two different work functions utilizes a silicidation of two different metals at different times, silicidation for one gate and polysilicon for the other, or silicidation using a single metal with two differently doped silicon structures. Thus the problem associated with performing silicidation of two different metals at the same time is avoided. If the two metals have significantly different silicidation temperatures, the one with the lower temperature silicidation will likely have significantly degraded performance as a result of having to also experience the higher temperature required to achieve silicidation with the other metal.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: February 10, 2004
    Assignee: Motorola, Inc.
    Inventors: Daniel Thanh-Khac Pham, Al T. Koh, Yeong-Jyh T. Lii, Robert F. Steimle, Anne Vandooren, Ricardo Garcia, Kimberly G. Reid, Marc Rossow, James P. Geren
  • Publication number: 20040018681
    Abstract: A method for providing gates of transistors with at least two different work functions utilizes a silicidation of two different metals at different times, silicidation for one gate and polysilicon for the other, or silicidation using a single metal with two differently doped silicon structures. Thus the problem associated with performing silicidation of two different metals at the same time is avoided. If the two metals have significantly different silicidation temperatures, the one with the lower temperature silicidation will likely have significantly degraded performance as a result of having to also experience the higher temperature required to achieve silicidation with the other metal.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 29, 2004
    Inventors: Daniel Thanh-Khac Pham, Bich-Yen Nguyen, James K. Schaeffer, Melissa O. Zavala, Sherry G. Straub, Al T. Koh, Yeong-Jyh T. Lii, Robert F. Steimle, Anne Vandooren, Ricardo Garcia, Kimberly G. Reid, Marc Rossow, James P. Geren