Patents by Inventor Anthony J. Modestino

Anthony J. Modestino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7833493
    Abstract: A mode of combustion and multi-component reactor to accomplish this mode of combustion are disclosed which produces fullerenes and fullerenic material by combustion. This mode consists of de-coupling an oxidation region of a flame from a post-flame region, thus giving greater control over operating parameters, such as equivalence ratio, temperature, and pressure; allows conditions of the operating parameters of the combustion reaction to be attained which would not be easily attained by conventional methods; and offers the ability to more easily stabilize the combustion reactions to allow for higher throughputs of fuel and oxidant. Several embodiments of a primary zone of a multi-component reactor are also disclosed. Said primary zone serves as the oxidation region, operates on the principle of providing recycle to the reacting combustion mixture, and which may be operated as approximately a well-mixed reactor.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: November 16, 2010
    Assignee: Nano-C, Inc.
    Inventors: Jack B. Howard, David F. Kronholm, Anthony J. Modestino, Henning Richter
  • Patent number: 7771692
    Abstract: A mode of combustion and multi-component reactor to accomplish this mode of combustion are disclosed which produces fullerenes and fullerenic material by combustion. This mode consists of de-coupling an oxidation region of a flame from a post-flame region, thus giving greater control over operating parameters, such as equivalence ratio, temperature, and pressure; allows conditions of the operating parameters of the combustion reaction to be attained which would not be easily attained by conventional methods; and offers the ability to more easily stabilize the combustion reactions to allow for higher throughputs of fuel and oxidant. Several embodiments of a primary zone of a multi-component reactor are also disclosed. Said primary zone serves as the oxidation region, operates on the principle of providing recycle to the reacting combustion mixture, and which may be operated as approximately a well-mixed reactor.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 10, 2010
    Assignee: Nano-C, Inc.
    Inventors: Jack B. Howard, David F. Kronholm, Anthony J. Modestino, Henning Richter
  • Patent number: 7494637
    Abstract: A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400° C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800° C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: February 24, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: William A. Peters, Jack B. Howard, Anthony J. Modestino, Fredreric Vogel, Carsten R. Steffin
  • Publication number: 20080286190
    Abstract: A mode of combustion and multi-component reactor to accomplish this mode of combustion are disclosed which produces fullerenes and fullerenic material by combustion. This mode consists of de-coupling an oxidation region of a flame from a post-flame region, thus giving greater control over operating parameters, such as equivalence ratio, temperature, and pressure; allows conditions of the operating parameters of the combustion reaction to be attained which would not be easily attained by conventional methods; and offers the ability to more easily stabilize the combustion reactions to allow for higher throughputs of fuel and oxidant. Several embodiments of a primary zone of a multi-component reactor are also disclosed. Said primary zone serves as the oxidation region, operates on the principle of providing recycle to the reacting combustion mixture, and which may be operated as approximately a well-mixed reactor.
    Type: Application
    Filed: August 1, 2008
    Publication date: November 20, 2008
    Inventors: Jack B. HOWARD, David F. KRONHOLM, Anthony J. MODESTINO, Henning RICHTER
  • Publication number: 20080280240
    Abstract: A mode of combustion and multi-component reactor to accomplish this mode of combustion are disclosed which produces fullerenes and fullerenic material by combustion. This mode consists of de-coupling an oxidation region of a flame from a post-flame region, thus giving greater control over operating parameters, such as equivalence ratio, temperature, and pressure; allows conditions of the operating parameters of the combustion reaction to be attained which would not be easily attained by conventional methods; and offers the ability to more easily stabilize the combustion reactions to allow for higher throughputs of fuel and oxidant. Several embodiments of a primary zone of a multi-component reactor are also disclosed. Said primary zone serves as the oxidation region, operates on the principle of providing recycle to the reacting combustion mixture, and which may be operated as approximately a well-mixed reactor.
    Type: Application
    Filed: May 27, 2008
    Publication date: November 13, 2008
    Applicant: NANO-C, INC.
    Inventors: Jack B. HOWARD, David F. KRONHOLM, Anthony J. MODESTINO, Henning RICHTER
  • Patent number: 7396520
    Abstract: A mod of combustion and a multi-component reactor to accomplish this mode of combustion are disclosed which produces fullerenes and fullerenic material by combustion. This mode consists of de-coupling an oxidation region of a flame from a post-flame region, thus giving greater control over operating parameters, such as equivalence ratio, temperature, and pressure; allows conditions of the operating parameters of the combustion reaction to be attained which would not be easily attained by conventional methods; and offers the ability to more easily stabilize the combustion reactions to allow for higher throughputs of fuel and oxidant. Several embodiments of a primary zone of a multicomponent reactor are also disclosed. Said primary zone serves as the oxidation region, operates on the principle of providing recycle to the reacting combustion mixture, and which may be operated as approximately a well-mixed reactor.
    Type: Grant
    Filed: August 31, 2002
    Date of Patent: July 8, 2008
    Assignee: Nano-C, Inc.
    Inventors: Jack B. Howard, David F. Kronholm, Anthony J. Modestino, Henning Richter
  • Publication number: 20020082458
    Abstract: A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400° C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800° C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.
    Type: Application
    Filed: May 16, 2001
    Publication date: June 27, 2002
    Inventors: William A. Peters, Jack B. Howard, Anthony J. Modestino, Frederic Vogel, Carsten R. Steffin
  • Patent number: 6361580
    Abstract: A continuous process for the production of elemental aluminum is described. Aluminum is made from aluminum oxide and a reducing gas such as a light hydrocarbon gas or other reducing gas, for example hydrogen. In the process, a feed stream of the aluminum oxide and the reducing gas is continuously fed into a reaction zone. There the aluminum oxide and reducing gas are reacted at a temperature of about 1500° C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental aluminum. The product stream is continuously quenching after leaving the reaction zone, and the elemental aluminum is separated from the other reaction products.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: March 26, 2002
    Assignee: Massachuetts Institute of Technology
    Inventors: Sven Plahte, Bjorn Lillebuen, Alexander F. Diaz, Jack B. Howard, Anthony J. Modestino, William A. Peters
  • Patent number: 5782952
    Abstract: A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: July 21, 1998
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexander F. Diaz, Jack B. Howard, Anthony J. Modestino, William A. Peters