Patents by Inventor Anthony J. Stratakos

Anthony J. Stratakos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862389
    Abstract: A magnetic device includes a magnetic core, a plurality of first windings forming respective first winding turns, and a second winding forming a second winding turn. Each first winding turn is within the second winding turn, as seen when the magnetic device is viewed cross-sectionally in a first direction. Yet another magnetic device includes a magnetic core, one or more first windings, and one or more second windings magnetically isolated from the one or more first windings.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: January 2, 2024
    Assignee: VOLTERRA SEMICONDUCTOR LLC
    Inventors: Alexandr Ikriannikov, Anthony J. Stratakos
  • Patent number: 11532985
    Abstract: A method for controlling a switching circuit including an input port electrically coupled to a photovoltaic device and an output port electrically coupled to a load includes (1) entering a voltage limiting operating mode and (2) in the voltage limiting operating mode (i) causing a control switching device of the switching circuit to repeatedly switch between its conductive and non-conductive states in a manner which limits magnitude of an output voltage to a maximum voltage value, the output voltage being a voltage across the output port, and (ii) varying the maximum voltage value as a function of magnitude of an output current, the output current being a current flowing through the output port.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 20, 2022
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Seth M. Kahn, Anthony J. Stratakos, Ilija Jergovic, Vincent W. Ng, Ryan James Ricchiuti, Artin Der Minassians
  • Patent number: 11062830
    Abstract: A magnetic device includes a magnetic core, a plurality of first windings forming respective first winding turns, and a second winding forming a second winding turn. Each first winding turn is within the second winding turn, as seen when the magnetic device is viewed cross-sectionally in a first direction. Yet another magnetic device includes a magnetic core, one or more first windings, and one or more second windings magnetically isolated from the one or more first windings.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: July 13, 2021
    Assignee: Volterra Semiconductor LLC
    Inventors: Alexandr Ikriannikov, Anthony J. Stratakos
  • Patent number: 10778097
    Abstract: A maximum power point tracking controller includes an input port for electrically coupling to an electric power source, an output port for electrically coupling to a load, a control switching device, and a control subsystem. The control switching device is adapted to repeatedly switch between its conductive and non-conductive states to transfer power from the input port to the output port. The control subsystem is adapted to control switching of the control switching device to regulate a voltage across the input port, based at least in part on a signal representing current flowing out of the output port, to maximize a signal representing power out of the output port.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 15, 2020
    Assignee: VOLTERRA SEMICONDUCTOR LLC
    Inventors: Michael D. McJimsey, Anthony J. Stratakos, Ilija Jergovic, Xin Zhang, Kaiwei Yao, Vincent W. Ng, Phong T. Nguyen, Artin Der Minassians, Ryan James Ricchiuti
  • Patent number: 10559559
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 11, 2020
    Assignee: Volterra Semiconductor Corporation
    Inventors: David Lidsky, Ognjen Djekic, Ion Elinor Opris, Budong You, Anthony J. Stratakos, Alexandr Ikriannikov, Biljana Beronja, Trey Roessig
  • Publication number: 20190386490
    Abstract: A method for controlling a switching circuit including an input port electrically coupled to a photovoltaic device and an output port electrically coupled to a load includes (1) entering a voltage limiting operating mode and (2) in the voltage limiting operating mode (i) causing a control switching device of the switching circuit to repeatedly switch between its conductive and non-conductive states in a manner which limits magnitude of an output voltage to a maximum voltage value, the output voltage being a voltage across the output port, and (ii) varying the maximum voltage value as a function of magnitude of an output current, the output current being a current flowing through the output port.
    Type: Application
    Filed: July 8, 2019
    Publication date: December 19, 2019
    Inventors: Seth M. Kahn, Anthony J. Stratakos, Ilija Jergovic, Vincent W. Ng, Ryan James Ricchiuti, Artin Der Minassians
  • Patent number: 10348095
    Abstract: A method for controlling a switching circuit including an input port electrically coupled to a photovoltaic device and an output port electrically coupled to a load includes (1) entering a voltage limiting operating mode and (2) in the voltage limiting operating mode (i) causing a control switching device of the switching circuit to repeatedly switch between its conductive and non-conductive states in a manner which limits magnitude of an output voltage to a maximum voltage value, the output voltage being a voltage across the output port, and (ii) varying the maximum voltage value as a function of magnitude of an output current, the output current being a current flowing through the output port.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: July 9, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Seth M. Kahn, Anthony J. Stratakos, Ilija Jergovic, Vincent W. Ng, Ryan James Ricchiuti, Artin Der Minassians
  • Patent number: 10332827
    Abstract: Various applications of interconnect substrates in power management systems are described.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: June 25, 2019
    Assignee: Volterra Semiconductor Corporation
    Inventors: Mihalis Michael, Kwang Hong Tan, Ilija Jergovic, Chiteh Chiang, Anthony J. Stratakos
  • Patent number: 10222814
    Abstract: A method for controlling a number of phases that are active in a multiphase direct-current-to-direct-current (DC-to-DC) converter includes (a) filtering a current signal representing a magnitude of current processed by the multiphase DC-to-DC converter to generate a filtered signal, (b) comparing the filtered signal to a first threshold value, (c) deactivating one or more phases of the multiphase DC-to-DC converter in response to the filtered signal falling below the first threshold value, (d) comparing the current signal to a second threshold value, the second threshold value being greater than the first threshold value, and (e) activating one or more phases of the multiphase DC-to-DC converter in response to the current signal rising above the second threshold value.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: March 5, 2019
    Assignee: Volterra Semiconductor LLC
    Inventors: Sombuddha Chakraborty, Yali Xiong, Michael D. McJimsey, Anthony J. Stratakos, Giovanni Garcea, Ilija Jergovic, Andrew Burstein, Andrea Pizzutelli
  • Patent number: 9966899
    Abstract: A method for testing a photovoltaic device electrically coupled to an input port of a maximum power point tracking (MPPT) controller, where the MPPT controller includes a switching circuit adapted to transfer power between the input port and an output port of the MPPT controller, includes the steps of: (a) driving a test current into the output port of the MPPT controller; (b) detecting presence of the test current; and (c) in response to detecting presence of the test current, causing the switching circuit to provide a path for the test current from the output port to the photovoltaic device.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: May 8, 2018
    Assignee: Volterra Semiconductor, LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Patent number: 9837556
    Abstract: An integrated photovoltaic panel has one or more integral DC-DC converter circuits. The DC-DC converter input port couples to a section of at least one photovoltaic (PV) device of the panel separate from PV devices feeding other converters. The converter has an MPPT controller for operating the converter to transfer maximum power from coupled photovoltaic devices to its output port. The PV panel has a transparent substrate to which PV devices are mounted. A laminating material seals PV devices and converters to the substrate. In embodiments, the panel has multiple converters connected with output ports in series. The integrated PV panel provides summed maximum powers of each section of PV devices. In some embodiments the DC-DC converters are complete with inductors, in other embodiments a common inductor is shared by multiple converters of the panel, in a particular embodiment the common inductor is parasitic inductance of the panel.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 5, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Ilija Jergovic, Kaiwei Yao, Anthony J. Stratakos
  • Patent number: 9806523
    Abstract: A switching circuit for extracting power from an electric power source includes (1) an input port for electrically coupling to the electric power source, (2) an output port for electrically coupling to a load, (3) a first switching device configured to switch between its conductive state and its non-conductive state to transfer power from the input port to the output port, (4) an intermediate switching node that transitions between at least two different voltage levels at least in part due to the first switching device switching between its conductive state and its non-conductive state, and (5) a controller for controlling the first switching device to maximize an average value of a voltage at the intermediate switching node.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: October 31, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20170256532
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 7, 2017
    Inventors: David Lidsky, Ognjen Djekic, Ion Elinor Opris, Budong You, Anthony J. Stratakos, Alexander Ikriannikov, Biljana Beronja, Trey Roessig
  • Patent number: 9698599
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: July 4, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 9691538
    Abstract: A magnetic device includes a magnetic core, one or more first windings, and one or more second windings. Each first winding forms a respective first turn around a respective first winding center axis, and each second winding forms a respective second turn around a common second winding center axis that is orthogonal to each first winding center axis. Another magnetic device includes a magnetic core, a plurality of first windings forming respective first winding turns, and a second winding forming a second winding turn. Each first winding turn is within the second winding turn, as seen when the magnetic device is viewed cross-sectionally in a first direction. Yet another magnetic device includes a magnetic core, one or more first windings, and one or more second windings magnetically isolated from the one or more first windings.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: June 27, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Alexandr Ikriannikov, Anthony J. Stratakos
  • Patent number: 9679885
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: June 13, 2017
    Assignee: Volterra Semiconductor Corporation
    Inventors: David Lidsky, Ognjen Djekic, Ion Opris, Budong You, Anthony J. Stratakos, Alexander Ikriannikov, Biljana Beronja, Trey Roessig
  • Publication number: 20170141725
    Abstract: A method for testing a photovoltaic device electrically coupled to an input port of a maximum power point tracking (MPPT) controller, where the MPPT controller includes a switching circuit adapted to transfer power between the input port and an output port of the MPPT controller, includes the steps of: (a) driving a test current into the output port of the MPPT controller; (b) detecting presence of the test current; and (c) in response to detecting presence of the test current, causing the switching circuit to provide a path for the test current from the output port to the photovoltaic device.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Kaiwei Yao, Xin Zhang, Vincent W. Ng
  • Publication number: 20170125335
    Abstract: Various applications of interconnect substrates in power management systems are described.
    Type: Application
    Filed: December 9, 2016
    Publication date: May 4, 2017
    Inventors: Mihalis Michael, Kwang Hong Tan, Ilija Jergovic, Chiteh Chiang, Anthony J. Stratakos
  • Patent number: 9577426
    Abstract: An integrated circuit chip includes a first input port, a first output port, and first and second transistors electrically coupled in series across the first input port. The second transistor is also electrically coupled across the first output port and is adapted to provide a path for current flowing through the first output port when the first transistor is in its non-conductive state. The integrated circuit chip additionally includes first driver circuitry for driving gates of the first and second transistors to cause the transistors to switch between their conductive and non-conductive states. The integrated circuit chip further includes first controller circuitry for controlling the first driver circuitry such that the first and second transistors switch between their conductive and non-conductive states to at least substantially maximize an amount of electric power extracted from an electric power source electrically coupled to the first input port.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 21, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Patent number: 9559679
    Abstract: An integrated circuit includes a semiconductor die including one or more switching circuits, a magnetic core having length and width, first and second metallic leads, and integrated circuit packaging material. The first metallic lead forms a first winding turn around a portion of the magnetic core, and the first metallic lead is electrically coupled to the semiconductor die. The second metallic lead forms a second winding turn around a portion of the magnetic core. The first and second winding turns are offset from each other along both of the width and length of the magnetic core. The integrated circuit is, for example, included in an integrated electronic assembly.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: January 31, 2017
    Assignee: Volterra Semiconductor, LLC
    Inventors: Alexandr Ikriannikov, Andrew J. Burstein, Anthony J. Stratakos