Patents by Inventor Anthony John Murray

Anthony John Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10989709
    Abstract: A method of recovering a target from a sample is provided. The method of recovering the target follows different steps. The steps include providing a binding element, wherein the binding elements are immobilized on a solid support, adding the sample comprising the target to the binding element to form a binding element-target complex; washing the binding element-target complex; and eluting the target from the binding element-target complex. The system for reversible detection of target in a range from 2 to 1,000,000 bind/release cycles is also provided.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 27, 2021
    Assignee: CYTIVA SWEDEN AB
    Inventors: Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj, Anthony John Murray
  • Patent number: 10359419
    Abstract: A method of recovering a target from a sample is provided. The method comprises the adding a substrate coupled binding element to the sample comprising the target to form a substrate coupled binding element-target complex; precipitating the complex by changing one or more environmental conditions of the substrate and recovering the target and the substrate coupled binding-element under mild conditions.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: July 23, 2019
    Assignee: General Electric Company
    Inventors: Anthony John Murray, Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj
  • Publication number: 20180370827
    Abstract: A method of operating a waste water treatment plant (WWTP) having at least one of an aerobic digester (AD) and a membrane bioreactor (MBR) is described. The method of operating AD is comprised of monitoring and controlling AD in real-time using an online extended Kalman filter (EKF) having a online dynamic model of AD. The EKF uses real-time AD measured data, and online dynamic model of AD to update adapted model parameters and estimate model based inferred variables for AD, which are used for AD control by AD control system having supervisory and low-level control layers. The method of operating MBR is similar to that of AD. The supervisory control ensures the WWTP satisfying the effluent quality requirement while minimize the operation cost. A WWTP having at least one of an AD or MBR is disclosed. The method of operating a WWTP can be implemented using a computer.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 27, 2018
    Applicant: General Electric Company
    Inventors: Aditya Kumar, Anthony John Murray, Ruijie Shi, Zhaoyang Wan, Mustafa Tekin Dokucu, Vijaysai Prasad
  • Patent number: 10046995
    Abstract: A method of operating a waste water treatment plant (WWTP) having at least one of an aerobic digester (AD) and a membrane bioreactor (MBR) is described. The method of operating AD is comprised of monitoring and controlling AD in real-time using an online extended Kalman filter (EKF) having a online dynamic model of AD. The EKF uses real-time AD measured data, and online dynamic model of AD to update adapted model parameters and estimate model based inferred variables for AD, which are used for AD control by AD control system having supervisory and low-level control layers. The method of operating MBR is similar to that of AD. The supervisory control ensures the WWTP satisfying the effluent quality requirement while minimize the operation cost. A WWTP having at least one of AD or MBR is disclosed. The method of operating a WWTP can be implemented using a computer.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: August 14, 2018
    Assignee: General Electric Company
    Inventors: Aditya Kumar, Anthony John Murray, Ruijie Shi, Zhaoyang Wan, Mustafa Tekin Dokucu, Vijaysai Prasad
  • Patent number: 9958441
    Abstract: A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: May 1, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: An-Ping Zhang, Anthony John Murray, Rui Chen
  • Publication number: 20170267716
    Abstract: Provided herein are aptamer-polymer conjugates which are responsive to environmental stimuli and are useful in selective purification of untagged target polypeptides.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Anthony John Murray, Andrew David Pris, Erik Leeming Kvam, Nandini Nagraj, Eugene Pauling Boden, Ernest William Kovacs, Louisa Ruth Carr, Rui Chen, Tiberiu Mircea Siclovan, Kelly Scott Chichak
  • Patent number: 9765375
    Abstract: Methods for developing a binding-element are provided. A mixture comprising a target molecule, a plurality of oligonucleotides and a ligase is provided, followed by binding the oligonucleotides to the target molecule to form an oligonucleotides-target molecule complex. The oligonucleotides bound to the target molecule are ligated to form the binding-element. The binding-elements are separated from the mixture.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 19, 2017
    Assignee: General Electric Company
    Inventors: Anthony John Murray, John Richard Nelson
  • Publication number: 20170191992
    Abstract: A method of recovering a target from a sample is provided. The method of recovering the target follows different steps. The steps include providing a binding element, wherein the binding elements are immobilized on a solid support, adding the sample comprising the target to the binding element to form a binding element-target complex; washing the binding element-target complex; and eluting the target from the binding element-target complex. The system for reversible detection of target in a range from 2 to 1,000,000 bind/release cycles is also provided.
    Type: Application
    Filed: March 22, 2017
    Publication date: July 6, 2017
    Inventors: Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj, Anthony John Murray
  • Publication number: 20160355426
    Abstract: Methods for treatment of sludge with microwave irradiation for improving its dewatering are provided. In one embodiment, the method includes exposing the sludge to microwave irradiation at an absorbed power density of between about 7 W/ml and about 13 W/ml. Turbidity, total solids content and overall dewaterability are improved when the microwave irradiation treatment is combined with another method for dewatering sludge, such as enzyme treatment, conditioning with a flocculating agent and mechanical dewatering.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Vasile Bogdan Neculaes, Stephen Robert Vasconcellos, Brian Christopher Moore, Anthony John Murray, June Klimash, Kenneth Roger Conway, Tracy Lynn Paxon, Michael Brian Salerno, Casey L. Renko
  • Publication number: 20160313318
    Abstract: A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
    Type: Application
    Filed: July 7, 2016
    Publication date: October 27, 2016
    Inventors: An-Ping Zhang, Anthony John Murray, Rui Chen
  • Patent number: 9409769
    Abstract: A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: August 9, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: An-Ping Zhang, Anthony John Murray, Rui Chen
  • Publication number: 20160202254
    Abstract: A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
    Type: Application
    Filed: November 30, 2007
    Publication date: July 14, 2016
    Applicant: General Electric Company
    Inventors: An-Ping Zhang, Anthony John Murray, Rui Chen
  • Publication number: 20150093839
    Abstract: A method of recovering a target from a sample is provided. The method of recovering the target follows different steps. The steps include providing a binding element, wherein the binding elements are immobilized on a solid support, adding the sample comprising the target to the binding element to form a binding element-target complex; washing the binding element-target complex; and eluting the target from the binding element-target complex. The system for reversible detection of target in a range from 2 to 1,000,000 bind/release cycles is also provided.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj, Anthony John Murray
  • Publication number: 20150093820
    Abstract: A method of recovering a target from a sample is provided. The method comprises the adding a substrate coupled binding element to the sample comprising the target to form a substrate coupled binding element-target complex; precipitating the complex by changing one or more environmental conditions of the substrate and recovering the target and the substrate coupled binding-element under mild conditions.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: General Electric Company
    Inventors: Anthony John Murray, Radislav Alexandrovich Potyrailo, Andrew David Pris, Nandini Nagraj
  • Publication number: 20150034553
    Abstract: A method of operating a waste water treatment plant (WWTP) having at least one of an aerobic digester (AD) and a membrane bioreactor (MBR) is described. The method of operating AD is comprised of monitoring and controlling AD in real-time using an online extended Kalman filter (EKF) having a online dynamic model of AD. The EKF uses real-time AD measured data, and online dynamic model of AD to update adapted model parameters and estimate model based inferred variables for AD, which are used for AD control by AD control system having supervisory and low-level control layers. The method of operating MBR is similar to that of AD. The supervisory control ensures the WWTP satisfying the effluent quality requirement while minimize the operation cost. A WWTP having at least one of AD or MBR is disclosed. The method of operating a WWTP can be implemented using a computer.
    Type: Application
    Filed: July 25, 2012
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Aditya Kumar, Anthony John Murray, Ruijie Shi, Zhaoyang Wan, Mustafa Tekin Dokucu, Vijaysai Prasad
  • Patent number: 8940521
    Abstract: A composite detection device having in-line desalting is provided. The composite detection device comprises a membrane configured for desalting at least a portion of an analyte stream, and a nanostructure for detecting a bio-molecule or a bio-molecule interaction, wherein the nanostructure and the membrane are arranged such that an analyte stream desalted at least in part by the membrane is detected by the nanostructure. A bio-sending detection system having the composite detection device and method of fabrication of the composite detection device are also provided.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Anthony John Murray, Anping Zhang, Rui Chen
  • Publication number: 20150004611
    Abstract: Methods for developing a binding-element are provided. A mixture comprising a target molecule, a plurality of oligonucleotides and a ligase is provided, followed by binding the oligonucleotides to the target molecule to form an oligonucleotides-target molecule complex. The oligonucleotides bound to the target molecule are ligated to form the binding-element. The binding-elements are separated from the mixture.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Anthony John Murray, John Richard Nelson
  • Patent number: 8622223
    Abstract: A method of making a membrane assembly is provided. The method comprises forming an inorganic membrane layer disposed on a substrate, and forming a plurality of macropores in the substrate at least in part using anodization. Further, a membrane assembly is provided. The membrane assembly comprises a filtering membrane that is coupled to an anodized substrate comprising a plurality of macropores.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 7, 2014
    Assignee: General Electric Company
    Inventors: Anping Zhang, Azar Alizadeh, Joleyn Eileen Balch, Rui Chen, Anthony John Murray, Vicki Herzl Watkins, Oliver Charles Boomhower, Reed Roeder Corderman, Peter Paul Gipp
  • Publication number: 20130161255
    Abstract: Methods for treatment of sludge with microwave irradiation for improving its dewatering are provided. In one embodiment, the method includes exposing the sludge to microwave irradiation at a power density of between about 3 W/ml and about 17 W/ml. Turbidity, total solids content and overall dewaterability are improved when the microwave irradiation treatment is combined with another method for dewatering sludge, such as enzyme treatment, conditioning with a flocculating agent and mechanical dewatering.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vasile Bogdan NECULAES, Stephen VASCONCELLOS, Brian MOORE, Anthony John MURRAY, June KLIMASH, Kenneth CONWAY, Tracy PAXON, Michael SALERNO, Casey RENKO
  • Patent number: 8377277
    Abstract: Electrophoresis systems and methods comprise an electrophoresis device, wherein the electrophoresis comprises a loading channel, a separation channel, and an injection channel. The loading channel is in fluid communication with a first and second sample port. The separation channel is connected to the loading channel to form a first intersection, and an injection channel connected to the separation channel to form a second intersection and in fluid communication with a first reservoir, and wherein the separation channel is in fluid communication with a second reservoir. The electrophoresis system further comprises two electrodes coupled to the first sample port and the first reservoir, and the first sample port and the second reservoir, respectively, that are adapted to move the sample into the loading channel towards the first reservoir and form a sample plug in the separation channel, and to further move the sample plug into the separation channel towards the second reservoir.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Jun Xie, Wei-Cheng Tian, Shashi Thutupalli, Li Zhu, Anthony John Murray, Erin Jean Finehout