Patents by Inventor Anthony Mastreani

Anthony Mastreani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6358439
    Abstract: A copper-based paste is disclosed for filling vias in, and forming conductive surface patterns on, ceramic substrate packages for semiconductor chip devices. The paste contains copper aluminate powder in proper particle size and weight proportion to achieve grain size and shrinkage control of the via and thick film copper produced by sintering. The shrinkage of the copper material during sintering is closely matched to that of the ceramic substrate.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 19, 2002
    Assignee: International Business Machines Corporation
    Inventors: Farid Youssif Aoude, Lawrence Daniel David, Renuka Shastri Divakaruni, Shaji Farooq, Lester Wynn Herron, Hal Mitchell Lasky, Anthony Mastreani, Govindarajan Natarajan, Srinivasa S. N. Reddy, Vivek Madan Sura, Rao Venkateswara Vallabhaneni, Donald Rene Wall
  • Patent number: 6124041
    Abstract: A copper-based paste is disclosed for filling vias in, and forming conductive surface patterns on, ceramic substrate packages for semiconductor chip devices. The paste contains copper aluminate powder in proper particle size and weight proportion to achieve grain size and shrinkage control of the via and thick film copper produced by sintering. The shrinkage of the copper material during sintering is closely matched to that of the ceramic substrate.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: September 26, 2000
    Assignee: International Business Machines Corporation
    Inventors: Farid Youssif Aoude, Lawrence Daniel David, Renuka Shastri Divakaruni, Shaji Farooq, Lester Wynn Herron, Hal Mitchell Lasky, Anthony Mastreani, Govindarajan Natarajan, Srinivasa S. N. Reddy, Vivek Madan Sura, Rao Venkateswara Vallabhaneni, Donald Rene Wall
  • Patent number: 5925443
    Abstract: A copper-based paste is disclosed for filling vias in, and forming conductive surface patterns on, ceramic substrate packages for semiconductor chip devices. The paste contains copper aluminate powder in proper particle size and weight proportion to achieve grain size and shrinkage control of the via and thick film copper produced by sintering. The shrinkage of the copper material during sintering is closely matched to that of the ceramic substrate.
    Type: Grant
    Filed: September 10, 1991
    Date of Patent: July 20, 1999
    Assignee: International Business Machines Corporation
    Inventors: Farid Youssif Aoude, Lawrence Daniel David, Renuka Shastri Divakaruni, Shaji Farooq, Lester Wynn Herron, Hal Mitchell Lasky, Anthony Mastreani, Govindarajan Natarajan, Srinivasa S. N. Reddy, Vivek Madan Sura, Rao Venkateswara Vallabhaneni, Donald Rene Wall
  • Patent number: 5525761
    Abstract: A copper-based paste for multilayer ceramic substrate vias and lines including copper particles as the majority constituent of the paste, a refractory metal additive selected from the group consisting of chromium, tantalum, and tungsten, and organic materials.This copper-based paste has particular applicability to the formation of vias and lines in ceramic packages wherein the vias and lines would have a composition principally of copper with additions of the refractory metal.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 11, 1996
    Assignee: International Business Machines Corporation
    Inventors: Lawrence D. David, Shaji Farooq, Anthony Mastreani, Srinivasa S-N. Reddy, Rao V. Vallabhaneni
  • Patent number: 5512711
    Abstract: A copper-based paste for multilayer ceramic substrate vias and lines including copper particles as the majority constituent of the paste, a refractory metal additive selected from the group consisting of chromium, tantalum, and tungsten, and organic materials. This copper-based paste has particular applicability to the formation of vias and lines in ceramic packages wherein the vias and lines would have a composition principally of copper with additions of the refractory metal.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: April 30, 1996
    Assignee: International Business Machines Corporation
    Inventors: Lawrence D. David, Shaji Farooq, Anthony Mastreani, Srinivasa S-N. Reddy, Rao V. Vallabhaneni
  • Patent number: 5277725
    Abstract: The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
    Type: Grant
    Filed: May 11, 1992
    Date of Patent: January 11, 1994
    Assignee: International Business Machines Corporation
    Inventors: John Acocella, Peter A. Agostino, Arnold I. Baise, Richard A. Bates, Ray M. Bryant, Jon A. Casey, David R. Clarke, George Czornyj, Allen J. Dam, Lawrence D. David, Renuka S. Divakaruni, Werner E. Dunkel, Ajay P. Giri, Liang-Choo Hsia, James N. Humenik, Steven M. Kandetzke, Daniel P. Kirby, John U. Knickerbocker, Sarah H. Knickerbocker, Anthony Mastreani, Amy T. Matts, Robert W. Nufer, Charles H. Perry, Srinivasa S. N. Reddy, Salvatore J. Scilla, Mark A. Takacs, Lovell B. Wiggins
  • Patent number: 5139852
    Abstract: The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addressed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: August 18, 1992
    Assignee: International Business Machines Corporation
    Inventors: Arnold I. Baise, Ray M. Bryant, Jon A. Casey, Allen J. Dam, Werner E. Dunkel, James N. Humenik, Anthony Mastreani, Robert W. Nufer, Charles H. Perry, Salvatore J. Scilla
  • Patent number: 5135595
    Abstract: The cracking experienced during thermal cycling of metal:dielectric semiconductor packages results from a mismatch in thermal co-efficients of expansion. The non-hermeticity associated with such cracking can be addresssed by backfilling the permeable cracks with a flexible material. Uniform gaps between the metal and dielectric materials can similarly be filled with flexible materials to provide stress relief, bulk compressibility and strength to the package. Furthermore, a permeable, skeletal dielectric can be fabricated as a fired, multilayer structure having sintered metallurgy and subsequently infused with a flexible, temperature-stable material to provide hermeticity and strength.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: August 4, 1992
    Assignee: International Business Machines Corporation
    Inventors: John Acocella, Peter A. Agostino, Arnold I. Baise, Richard A. Bates, Ray M. Bryant, Jon A. Casey, David R. Clarke, George Czornyj, Allen J. Dam, Lawrence D. David, Renuka S. Divakaruni, Werner E. Dunkel, Ajay P. Giri, Liang-Choo Hsia, James N. Humenik, Steven M. Kandetzke, Daniel P. Kirby, John U. Knickerbocker, Sarah H. Knickerbocker, Anthony Mastreani, Amy T. Matts, Robert W. Nufer, Charles H. Perry, Srinivasa S. N. Reddy, Salvatore J. Scilla, Mark A. Takacs, Lovell B. Wiggins