Patents by Inventor Anthony Michael Klodowski

Anthony Michael Klodowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11451057
    Abstract: A method for controlling an electrical power system connected to a power grid includes receiving a reactive power command and a measured reactive power and generating a reactive power error signal based on a difference between the reactive power command and the measured reactive power. Further, the method includes receiving, via a reactive power regulator, the reactive power error signal. Moreover, the method includes generating, via the reactive power regulator, a voltage command based on the error signal. The method also includes generating, via a droop control, a voltage droop signal. In addition, the method includes generating a voltage error signal as a function of the voltage droop signal and at least one of the voltage command or a measured terminal voltage. Thus, the method further includes generating, via a voltage regulator, a reactive current command based on the voltage error signal.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 20, 2022
    Assignee: General Electric Company
    Inventors: Rajni Kant Burra, Govardhan Ganireddy, Anthony Michael Klodowski, Wenqiang Yang
  • Patent number: 11114963
    Abstract: A power generation system (100, 200, 300, 400) is presented. The power generation system includes a prime mover (102), a doubly-fed induction generator (DFIG) (104) having a rotor winding (126) and a stator winding (122), a rotor-side converter (106), a line-side converter (108), and a secondary power source (110, 401) electrically coupled to a DC-link (128). Additionally, the power generation system includes a control sub-system (112, 212, 312) having a controller, and a plurality of switching elements (130, and 132 or 201). The controller is configured to selectively control switching of one or more switching elements (130, and 132 or 201) based on a value of an operating parameter corresponding to at least one of the prime mover, the DFIG, or the secondary power source to connect the rotor-side converter in parallel to the line-side converter to increase an electrical power production by the power generation system.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 7, 2021
    Assignee: General Electric Company
    Inventors: Govardhan Ganireddy, Arvind Kumar Tiwari, Yashomani Y Kolhatkar, Anthony Michael Klodowski, John Leo Bollenbecker, Harold Robert Schnetzka, Robert Gregory Wagoner, Veena Padmarao
  • Patent number: 10951030
    Abstract: A method for reactive power control of a wind farm having a plurality of clusters of wind turbines with a cluster transformer connecting each cluster of wind turbines to a power grid is provided. The method includes receiving, via a plurality of cluster-level controllers, a reactive power command from a farm-level controller. The method also includes generating, via the cluster-level controllers, a cluster-level reactive current command for each cluster of wind turbines based on the reactive power command. Further, the method includes distributing, via the cluster-level controllers, a turbine-level reactive current command to turbine-level controllers of the wind turbines based on the cluster-level reactive current command.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: March 16, 2021
    Assignee: General Electric Company
    Inventors: Govardhan Ganireddy, Rajni Burra, Wei Ren, Anthony Michael Klodowski, Saurabh Shukla, Zhuohui Tan, Robert Gregory Wagoner
  • Patent number: 10790770
    Abstract: A method for operating an electrical power system includes detecting a bridge current magnitude in a rotor-side converter or line-side converter of a power converter, the power converter electrically coupled between a generator rotor and a transformer. The method further includes comparing the bridge current magnitude in the one of the rotor-side converter or line-side converter to a primary predetermined threshold. The method further includes disabling bridge switching of one of the rotor-side converter or line-side converter when the bridge current magnitude exceeds the primary predetermined threshold.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 29, 2020
    Assignee: General Electric Company
    Inventors: Cornelius Edward Holliday, Anthony Michael Klodowski
  • Patent number: 10784685
    Abstract: An electrical power subsystem includes a generator comprising a generator stator and a generator rotor, and a power converter electrically coupled to the generator. The power converter includes a plurality of rotor-side converters electrically coupled in parallel, a line-side converter, and a regulated DC link electrically coupling the plurality of rotor-side converters and the line-side converter. The electrical power subsystem further includes a stator power path for providing power from the generator stator to the power grid, and a converter power path for providing power from the generator rotor through the power converter to the power grid.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: September 22, 2020
    Assignee: General Electric Company
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Sumeet Singh Thakur, Robert Gregory Wagoner, Anthony Michael Klodowski, Yashomani Kolhatkar
  • Patent number: 10784689
    Abstract: An electrical power system includes a cluster of electrical power subsystems, each of the electrical power subsystems including a power converter electrically coupled to a generator having a generator rotor and a generator stator. Each of the electrical power subsystems defines a stator power path and a converter power path for providing power to the power grid. The converter power path includes a partial power transformer. The electrical power system further includes a subsystem breaker configured with each of the electrical power subsystems, and a cluster transformer for connecting each cluster of electrical power subsystems to the power grid. The electrical power system further includes a cluster power path extending between each subsystem breaker and the cluster transformer, and a distortion filter electrically coupled to the cluster transformer. The distortion filter reduces harmonics in current flowing from the electrical power subsystems to the cluster transformer.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: September 22, 2020
    Assignee: General Electric Company
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Rajni Burra, Robert Gregory Wagoner, Anthony Michael Klodowski, Yashomani Kolhatkar
  • Publication number: 20200235577
    Abstract: A method for controlling an electrical power system connected to a power grid includes receiving a reactive power command and a measured reactive power and generating a reactive power error signal based on a difference between the reactive power command and the measured reactive power. Further, the method includes receiving, via a reactive power regulator, the reactive power error signal. Moreover, the method includes generating, via the reactive power regulator, a voltage command based on the error signal. The method also includes generating, via a droop control, a voltage droop signal. In addition, the method includes generating a voltage error signal as a function of the voltage droop signal and at least one of the voltage command or a measured terminal voltage. Thus, the method further includes generating, via a voltage regulator, a reactive current command based on the voltage error signal.
    Type: Application
    Filed: September 15, 2017
    Publication date: July 23, 2020
    Inventors: Rajni Kant Burra, Govardhan Ganireddy, Anthony Michael Klodowski, Wenqiang Yang
  • Publication number: 20200083710
    Abstract: A method for reactive power control of a wind farm having a plurality of clusters of wind turbines with a cluster transformer connecting each cluster of wind turbines to a power grid is provided. The method includes receiving, via a plurality of cluster-level controllers, a reactive power command from a farm-level controller. The method also includes generating, via the cluster-level controllers, a cluster-level reactive current command for each cluster of wind turbines based on the reactive power command. Further, the method includes distributing, via the cluster-level controllers, a turbine-level reactive current command to turbine-level controllers of the wind turbines based on the cluster-level reactive current command.
    Type: Application
    Filed: May 2, 2018
    Publication date: March 12, 2020
    Inventors: Govardhan Ganireddy, Rajni Burra, Wei Ren, Anthony Michael Klodowski, Saurabh Shukla, Zhuohui Tan, Robert Gregory Wagoner
  • Publication number: 20200059176
    Abstract: A power generation system (100, 200, 300, 400) is presented. The power generation system includes a prime mover (102), a doubly-fed induction generator (DFIG) (104) having a rotor winding (126) and a stator winding (122), a rotor-side converter (106), a line-side converter (108), and a secondary power source (110, 401) electrically coupled to a DC-link (128). Additionally, the power generation system includes a control sub-system (112, 212, 312) having a controller, and a plurality of switching elements (130, and 132 or 201). The controller is configured to selectively control switching of one or more switching elements (130, and 132 or 201) based on a value of an operating parameter corresponding to at least one of the prime mover, the DFIG, or the secondary power source to connect the rotor-side converter in parallel to the line-side converter to increase an electrical power production by the power generation system.
    Type: Application
    Filed: April 9, 2018
    Publication date: February 20, 2020
    Inventors: Govardhan Ganireddy, Arvind Kumar Tiwari, Yashomani Y Kolhatkar, Anthony Michael Klodowski, John Leo Bollenbecker, Harold Robert Schnetzka, Robert Gregory Wagoner, Veena Padmarao
  • Patent number: 10491038
    Abstract: A method for controlling an electrical power subsystem includes determining an auxiliary voltage error value based on a measured voltage of the low voltage distribution panel. The method further includes receiving an active current command. The method further includes calculating a switching pattern for a line-side converter of the power converter based on the auxiliary voltage error value and the active current command. A current level produced by the line-side converter controls a voltage to the low voltage distribution panel.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Anthony Michael Klodowski
  • Patent number: 10396695
    Abstract: The present disclosure is directed to a method for protecting an electrical power system connected to a power grid. The electrical power system includes at least one cluster of electrical power subsystems. Each of the electrical power subsystems defines a stator power path and a converter power path for providing power to the power grid. The converter power path includes a partial power transformer. The electrical power system further includes a subsystem switch configured with each of the electrical power subsystems and a cluster transformer connecting each cluster of electrical power subsystems to the power grid. A cluster switch is configured with the cluster transformer. A controller is communicatively coupled to each of the plurality of electrical power subsystems. Thus, the controller monitors the electrical power system for faults, and if a fault is detected in the cluster, sends, via one of the subsystem switches or the power converters, a block signal to the cluster switch.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: August 27, 2019
    Assignee: General Electric Company
    Inventors: Govardhan Ganireddy, John Leo Bollenbecker, Rajni Burra, Robert Gregory Wagoner, Anthony Michael Klodowski
  • Patent number: 10352298
    Abstract: A wind generation system includes a wind turbine for generating mechanical power, a doubly-fed induction generator for converting the mechanical power to electrical power, a converter for converting the electrical power to a desired electrical power for supplying to a power grid, and a transformer through which a stator of the generator is coupled to the power grid. When a measured rotation speed feedback from the rotor of the generator is lower than an original cut-in rotation speed of the rotor, a cut-in rotation speed of the rotor is lowered by determining a DC link voltage margin of the converter, determining a DC link voltage setpoint of the converter based on the determined DC link voltage margin; and controlling the converter based on the determined DC link voltage setpoint; and/or by increasing a turn ratio of the transformer to reduce a grid voltage from the power grid.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: July 16, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Zhuohui Tan, Robert Gregory Wagoner, Anthony Michael Klodowski
  • Patent number: 10340829
    Abstract: The present subject matter is directed to an electrical power circuit connected to a power grid and method of operating same. The electrical power circuit has a power converter electrically coupled to a generator, such as a doubly-fed induction generator, having a rotor and a stator. Thus, the method includes operating rotor connections of the rotor of the generator in a wye configuration during a first rotor speed operating range. Further, the method includes monitoring a rotor speed of the rotor of the generator. Thus, the method also includes transitioning the rotor connections of the rotor from the wye configuration to a delta configuration if the rotor speed changes to a second rotor speed operating range.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: July 2, 2019
    Assignee: General Electric Company
    Inventors: Harold Robert Schnetzka, Anthony Michael Klodowski, Sidney Allen Barker
  • Publication number: 20180366977
    Abstract: A method for controlling an electrical power subsystem includes determining an auxiliary voltage error value based on a measured voltage of the low voltage distribution panel. The method further includes receiving an active current command. The method further includes calculating a switching pattern for a line-side converter of the power converter based on the auxiliary voltage error value and the active current command. A current level produced by the line-side converter controls a voltage to the low voltage distribution panel.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Anthony Michael Klodowski
  • Publication number: 20180342968
    Abstract: A method for operating an electrical power system includes detecting a bridge current magnitude in a rotor-side converter or line-side converter of a power converter, the power converter electrically coupled between a generator rotor and a transformer. The method further includes comparing the bridge current magnitude in the one of the rotor-side converter or line-side converter to a primary predetermined threshold. The method further includes disabling bridge switching of one of the rotor-side converter or line-side converter when the bridge current magnitude exceeds the primary predetermined threshold.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: Cornelius Edward Holliday, Anthony Michael Klodowski
  • Publication number: 20180323620
    Abstract: An electrical power system includes a cluster of electrical power subsystems, each of the electrical power subsystems including a power converter electrically coupled to a generator having a generator rotor and a generator stator. Each of the electrical power subsystems defines a stator power path and a converter power path for providing power to the power grid. The converter power path includes a partial power transformer. The electrical power system further includes a subsystem breaker configured with each of the electrical power subsystems, and a cluster transformer for connecting each cluster of electrical power subsystems to the power grid. The electrical power system further includes a cluster power path extending between each subsystem breaker and the cluster transformer, and a distortion filter electrically coupled to the cluster transformer. The distortion filter reduces harmonics in current flowing from the electrical power subsystems to the cluster transformer.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Rajni Burra, Robert Gregory Wagoner, Anthony Michael Klodowski, Yashomani Kolhatkar
  • Publication number: 20180323619
    Abstract: An electrical power subsystem includes a generator comprising a generator stator and a generator rotor, and a power converter electrically coupled to the generator. The power converter includes a plurality of rotor-side converters electrically coupled in parallel, a line-side converter, and a regulated DC link electrically coupling the plurality of rotor-side converters and the line-side converter. The electrical power subsystem further includes a stator power path for providing power from the generator stator to the power grid, and a converter power path for providing power from the generator rotor through the power converter to the power grid.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Govardhan Ganireddy, Saurabh Shukla, Sumeet Singh Thakur, Robert Gregory Wagoner, Anthony Michael Klodowski, Yashomani Kolhatkar
  • Publication number: 20180302011
    Abstract: The present disclosure is directed to a method for protecting an electrical power system connected to a power grid. The electrical power system includes at least one cluster of electrical power subsystems. Each of the electrical power subsystems defines a stator power path and a converter power path for providing power to the power grid. The converter power path includes a partial power transformer. The electrical power system further includes a subsystem switch configured with each of the electrical power subsystems and a cluster transformer connecting each cluster of electrical power subsystems to the power grid. A cluster switch is configured with the cluster transformer. A controller is communicatively coupled to each of the plurality of electrical power subsystems. Thus, the controller monitors the electrical power system for faults, and if a fault is detected in the cluster, sends, via one of the subsystem switches or the power converters, a block signal to the cluster switch.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Inventors: Govardhan Ganireddy, John Leo Bollenbecker, Rajni Burra, Robert Gregory Wagoner, Anthony Michael Klodowski
  • Patent number: 10075114
    Abstract: The present subject matter is directed to a system and method for operating an electrical power circuit connected to a power grid. The electrical power circuit has a power converter electrically coupled to a generator. The method includes monitoring a rotor speed of the generator during operation of the electrical power circuit. The method also includes increasing an operating range of the rotor speed of the generator. Further, the method includes determining at least one of a line-side voltage of a line-side converter of the power converter or a rotor-side voltage of a rotor-side converter of the power converter during operation of the electrical power circuit. Another step include controlling, via a converter controller, a DC link voltage of a DC link of the power converter as a function of one or more of the line-side voltage, the rotor-side voltage, and/or the rotor speed.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Harold Robert Schnetzka, Anthony Michael Klodowski, Sidney Allen Barker
  • Publication number: 20180171976
    Abstract: A wind generation system includes a wind turbine for generating mechanical power, a doubly-fed induction generator for converting the mechanical power to electrical power, a converter for converting the electrical power to a desired electrical power for supplying to a power grid, and a transformer through which a stator of the generator is coupled to the power grid. When a measured rotation speed feedback from the rotor of the generator is lower than an original cut-in rotation speed of the rotor, a cut-in rotation speed of the rotor is lowered by determining a DC link voltage margin of the converter, determining a DC link voltage setpoint of the converter based on the determined DC link voltage margin; and controlling the converter based on the determined DC link voltage setpoint; and/or by increasing a turn ratio of the transformer to reduce a grid voltage from the power grid.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Zhuohui TAN, Anthony Michael KLODOWSKI, Robert Gregory WAGONER