Patents by Inventor Anthony Stephen Kewitsch

Anthony Stephen Kewitsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150331199
    Abstract: This invention discloses patch-panel systems for organized configuration management of large numbers of fiber optic interconnection strands, wherein each strand transmits high bandwidth signals between devices. In particular, a system for the programmable interconnection of large numbers of optical fiber strands is provided, whereby strands connecting a two-dimensional array of connectors are mapped in an ordered and rule based fashion into a one-dimensional array with substantially straight lines strands there between. The braid of fiber optic strands is partitioned into multiple independent, non-interfering zones or subbraids. The separation into subbraids provides spatial clearance for one or more robotic grippers to enter the free volume substantially adjacent to the two-dimensional array of connectors and to mechanically reconfigure one or more optical fiber strands without interrupting or entangling other fiber optic strands.
    Type: Application
    Filed: July 4, 2014
    Publication date: November 19, 2015
    Applicant: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 9188748
    Abstract: In this invention, a radio frequency identification overlay network that automates the discovery and configuration management of all physical fiber optic connections within a distributed communications network is disclosed. Miniaturized, low crosstalk RFID tags at a first fiber optic receptacle location and miniature, distributed, multiplexed reader antenna at a distant, second fiber optic receptacle location are joined by a fiber optic link which transmits both optical data and RF electronic signals. This electronic-fiber optic interface is comprised of two separated, miniaturized resonant antenna in communication with another through a resonant RF transmission line integral to the fiber optic cable. This RFID overlay network is comprised of multiplexed RFID readers, RF resonant fiber optic cables, and miniaturized RFID tags attached to the connector receptacles of network elements.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: November 17, 2015
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20150222352
    Abstract: In this invention, a radio frequency identification overlay network that automates the discovery and configuration management of all physical fiber optic connections within a distributed communications network is disclosed. Miniaturized, low crosstalk RFID tags at a first fiber optic receptacle location and miniature, distributed, multiplexed reader antenna at a distant, second fiber optic receptacle location are joined by a fiber optic link which transmits both optical data and RF electronic signals. This electronic-fiber optic interface is comprised of two separated, miniaturized resonant antenna in communication with another through a resonant RF transmission line integral to the fiber optic cable. This RFID overlay network is comprised of multiplexed RFID readers, RF resonant fiber optic cables, and miniaturized RFID tags attached to the connector receptacles of network elements.
    Type: Application
    Filed: October 7, 2013
    Publication date: August 6, 2015
    Applicant: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 9052490
    Abstract: This invention discloses a highly scalable and modular automated optical cross connect switch comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, apparatus and methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) having structured and coherent braid representations are provided.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: June 9, 2015
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 9052465
    Abstract: This invention discloses methods to reconfigure highly scalable and modular automated optical cross connect switch devices comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) are provided, whereby a two-dimensional input array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array. A particular algorithmic implementation for a system reconfigured by a three-axis robotic gripper as well as lateral translation of each row in the input port array is disclosed.
    Type: Grant
    Filed: June 8, 2013
    Date of Patent: June 9, 2015
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20150098698
    Abstract: An automated, robotic patch-panel system in a highly compact form factor implementing Knots and Braids switching algorithms is disclosed. This system incorporates stacked layers of connector ports, each row of connector ports defining an arc with a radius of curvature, wherein the radius of curvature is substantially larger than the total height of the stacked layers. A synchronized gripper pair on a three axis actuation system is used to disconnect, weave and connect fibers arbitrarily across an array of dense connector ports on a curvilinear surface. Each row of connector ports is independently translatable by slight rotation to generate the proper relationship between surrounding fibers and the individual fiber undergoing the multi-step reconfiguration process.
    Type: Application
    Filed: October 5, 2014
    Publication date: April 9, 2015
    Applicant: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8805155
    Abstract: This invention discloses scalable and modular automated optical cross-connect devices which exhibit low loss and scalability to high port counts. In particular, a device for the programmable interconnection of large numbers of optical fibers is provided, whereby a two-dimensional array of fiber optic connections is mapped in an ordered and rule based fashion into a one-dimensional array with tensioned fiber optic elements tracing substantially straight lines there between. Fiber optic elements are terminated in a stacked arrangement of flexible fiber optic elements with a capacity to retain excess fiber lengths while maintaining an adequate bend radius. The combination of these elements partitions the switch volume into multiple independent, non-interfering zones.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: August 12, 2014
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20140079364
    Abstract: This invention discloses a highly scalable and modular automated optical cross connect switch comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, apparatus and methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) having structured and coherent braid representations are provided.
    Type: Application
    Filed: June 3, 2013
    Publication date: March 20, 2014
    Applicant: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20130294723
    Abstract: This invention discloses methods to reconfigure highly scalable and modular automated optical cross connect switch devices comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) are provided, whereby a two-dimensional input array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array. A particular algorithmic implementation for a system reconfigured by a three-axis robotic gripper as well as lateral translation of each row in the input port array is disclosed.
    Type: Application
    Filed: June 8, 2013
    Publication date: November 7, 2013
    Applicant: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8554033
    Abstract: In this invention, a radio frequency identification overlay network that automates the discovery and configuration management of all physical fiber optic connections within a distributed communications network is disclosed. Miniaturized, low crosstalk RFID tags at a first fiber optic receptacle location and miniature, distributed, multiplexed reader antenna at a distant, second fiber optic receptacle location are joined by a fiber optic link which transmits both optical data and RF electronic signals. This electronic-fiber optic interface is comprised of two separated, miniaturized resonant antenna in communication with another through a resonant RF transmission line integral to the fiber optic cable. This RFID overlay network is comprised of multiplexed RFID readers, RF resonant fiber optic cables, and miniaturized RFID tags attached to the connector receptacles of network elements.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8480310
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 9, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8463091
    Abstract: This invention discloses methods to reconfigure highly scalable and modular automated optical cross connect switch devices comprised of large numbers of densely packed fiber strands suspended within a common volume. In particular, methods enabling programmable interconnection of large numbers of optical fibers (100's-1000's) are provided, whereby a two-dimensional input array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array. A particular algorithmic implementation for a system reconfigured by a three-axis robotic gripper as well as lateral translation of each row in the input port array is disclosed.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 11, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8428405
    Abstract: Composite fiber optic cables having exposed, conductive traces external to the cable jacket enable non-invasive, wireless electrical tone tracing of fiber optic cables. The cross sectional geometry of the fiber optic cable prevents conductive traces from short circuiting when abutting other cables or grounded conductive elements. Moreover, the structure allows convenient electrical contact to the conductive traces at any location along the longitudinal extent of the cable without requiring penetration of the cable jacket or removal of fiber optic connectors. Traceable fiber optic cables of various types are disclosed, including simplex, duplex and ribbon cables. Systems of traceable cables utilizing connectors with integrated electrical antenna elements attached to the conductive elements of cable and RFID tags for remote connector port identification are further disclosed.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 23, 2013
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 8068715
    Abstract: This invention discloses highly scalable and modular automated optical cross connect switch devices which exhibit low loss and scalability to high port counts. In particular, a device for the programmable interconnection of large numbers of optical fibers (100's-1000's) is provided, whereby a two-dimensional array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array with tensioned fiber optic circuit elements tracing substantially straight lines there between. Fiber optic elements are terminated in a stacked arrangement of flexible fiber optic circuit elements with a capacity to retain excess fiber lengths while maintaining an adequate bend radius. The combination of these elements partitions the switch volume into multiple independent, non-interfering zones, which retain their independence for arbitrary and unlimited numbers of reconfigurations.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: November 29, 2011
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7920764
    Abstract: Composite fiber optic cables having exposed, conductive traces external to the cable jacket enable non-invasive, wireless electrical tone tracing of fiber optic cables. The cross sectional geometry of the fiber optic cable prevents conductive traces from short circuiting when abutting other cables or grounded conductive elements. Moreover, the structure allows convenient electrical contact to the conductive traces at any location along the longitudinal extent of the cable without requiring penetration of the cable jacket or removal of fiber optic connectors. Traceable fiber optic cables of various types are disclosed, including simplex, duplex and ribbon cables. Systems of traceable cables utilizing connectors with integrated electrical antenna elements attached to the conductive elements of cable and RFID tags for remote connector port identification are further disclosed.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 5, 2011
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20100098425
    Abstract: In this invention, a radio frequency identification overlay network that automates the discovery and configuration management of all physical fiber optic connections within a distributed communications network is disclosed. Miniaturized, low crosstalk RFID tags at a first fiber optic receptacle location and miniature, distributed, multiplexed reader antenna at a distant, second fiber optic receptacle location are joined by a fiber optic link which transmits both optical data and RF electronic signals. This electronic-fiber optic interface is comprised of two separated, miniaturized resonant antenna in communication with another through a resonant RF transmission line integral to the fiber optic cable. This RFID overlay network is comprised of multiplexed RFID readers, RF resonant fiber optic cables, and miniaturized RFID tags attached to the connector receptacles of network elements.
    Type: Application
    Filed: November 26, 2009
    Publication date: April 22, 2010
    Applicant: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7665901
    Abstract: Devices to enhance the reliability of optical networks and to reduce the cost of repair are disclosed in this invention. In particular, compact and inexpensive fiber optic union adapters with built-in protective isolation prevent the transfer of damage from one connectorized fiber optic cable to another. The fiber optic union includes a split sleeve with an interior channel and a fiber stub centrally located within the interior channel. The fiber stub makes direct optical contact with the cable endfaces to enable efficient optical transmission between interconnected cables while providing a low loss, low back reflection adiabatic transition between the waveguide cores of the two cables.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: February 23, 2010
    Assignee: Telescent Inc.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7460753
    Abstract: In accordance with this invention, fiber optic cables are provided whose shape may be formed and retained while maintaining a limited bend radius. These features are produced by incorporating a compact compliant internal cable member into the cable structure. The compliant internal member consists not only of the fiber optic cable, but also of ductile and non-ductile elements. The ductile element is advantageously a tube or a wire which readily deforms to retain a given shape, and may be reshaped if desired. The non-ductile element, which resists sharp bending of the cable during shaping, comprises a substantially non-ductile elongated element disposed within the cable and configured to oppose excessively sharp bending along its length. Proper selection of the cross-sections and materials used in these elongated members produces a proper balance between shape retention and bending radius.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 2, 2008
    Inventor: Anthony Stephen Kewitsch
  • Publication number: 20080008430
    Abstract: In accordance with this invention, fiber optic cables are provided whose shape may be formed and retained while maintaining a limited bend radius. These features are produced by incorporating a compact compliant internal cable member into the cable structure. The compliant internal member consists not only of the fiber optic cable, but also of ductile and non-ductile elements. The ductile element is advantageously a tube or a wire which readily deforms to retain a given shape, and may be reshaped if desired. The non-ductile element, which resists sharp bending of the cable during shaping, comprises a substantially non-ductile elongated element disposed within the cable and configured to oppose excessively sharp bending along its length. Proper selection of the cross-sections and materials used in these elongated members produces a proper balance between shape retention and bending radius.
    Type: Application
    Filed: August 25, 2006
    Publication date: January 10, 2008
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 7289197
    Abstract: In this invention, a transmissive optical detector for low loss monitoring of transmitted optical power is described. The optical detector consists of a partially absorbing coating whose electrical characteristics change under illumination while letting most of the optical power pass through unperturbed. The coating is, for example, a transparent conductor such as indium tin oxide coated on the endface of a fiberoptic waveguide.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 30, 2007
    Inventor: Anthony Stephen Kewitsch