Patents by Inventor Anthony Thornberry

Anthony Thornberry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10450855
    Abstract: System and method for measuring a parameter within a well. The method includes connecting a gauge to a first end of a cable and connecting a vector network analyzer to a second end of the cable, lowering the gauge inside the well, generating a signal with the vector network analyzer and sending the signal along the cable to the gauge, sweeping a frequency of the signal within a given range while feeding the signal to the gauge, determining a resonance frequency of at least one sensor located within the gauge, and calculating the parameter from the resonance frequency of the at least one sensor.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: October 22, 2019
    Assignee: SERCEL-GRC CORP.
    Inventors: Anthony Thornberry, John Ainslie, David Covington
  • Publication number: 20170284189
    Abstract: System and method for measuring a parameter within a well. The method includes connecting a gauge to a first end of a cable and connecting a vector network analyzer to a second end of the cable, lowering the gauge inside the well, generating a signal with the vector network analyzer and sending the signal along the cable to the gauge, sweeping a frequency of the signal within a given range while feeding the signal to the gauge, determining a resonance frequency of at least one sensor located within the gauge, and calculating the parameter from the resonance frequency of the at least one sensor.
    Type: Application
    Filed: April 4, 2016
    Publication date: October 5, 2017
    Inventors: Anthony THORNBERRY, John AINSLIE, David COVINGTON
  • Patent number: 9759837
    Abstract: This invention relates to a data communication system/method for use in a downhole application wherein electrical energy is supplied over a multiple-conductor power cable to a motor assembly of a downhole tool such as an electric submersible pump. A power leg coupling interfaces a surface controller of a downhole instrument to the conductors of the tool's power cable. Uplink communication of telemetry data occurs via current modulation generated by the downhole instrument and interpreted by a surface controller. Downlink communication of downhole instrument data occurs over a different communication scheme supported by the downhole and surface controllers. Downlink communication scheme provides a supply of power to the downhole instrument. Protection of downhole electronics and continuity of communication is ensured in the event of a ground fault on the power cable. Both downlink and uplink communication frequencies are adaptive based on frequencies and voltages present on the power cable.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: September 12, 2017
    Assignee: SERCEL-GRC CORPORATION
    Inventors: Guillaume Grente, Anthony Thornberry, David Funkhouser, Bryon Western
  • Patent number: 9506340
    Abstract: A system and method of monitoring a pressure, temperature, and/or vibration of a hostile environment without requiring the use of active electronics or an oscillator circuit in that environment. The system and method interrogate a resonant pressure sensor and a resonant or passive temperature sensor connected to a transmission line and located at least 100 feet (30.48 m) away from a network analyzer. The system and method use the reflected frequencies from the sensors to determine the pressure, temperature, and/or vibration. If the sensors are networked by the transmission line or a network filter, the reflected portion can include the reflected transmission energy. The applied signal and reflected portion travel along the transmission line, which is preferably impedance matched to that of the system. If a multi-conductor cable is used, the effects of the cable's length and temperature are compensated for via a system calibration when in field use.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 29, 2016
    Assignee: Sercel-GRC Corporation
    Inventors: Goutham R. Kirikera, William M. Patton, Suzanne M. Behr, Tracy Sawyer, Anthony Thornberry
  • Publication number: 20160259086
    Abstract: This invention relates to a data communication system/method for use in a downhole application wherein electrical energy is supplied over a multiple-conductor power cable to a motor assembly of a downhole tool such as an electric submersible pump. A power leg coupling interfaces a surface controller of a downhole instrument to the conductors of the tool's power cable. Uplink communication of telemetry data occurs via current modulation generated by the downhole instrument and interpreted by a surface controller. Downlink communication of downhole instrument data occurs over a different communication scheme supported by the downhole and surface controllers. Downlink communication scheme provides a supply of power to the downhole instrument. Protection of downhole electronics and continuity of communication is ensured in the event of a ground fault on the power cable. Both downlink and uplink communication frequencies are adaptive based on frequencies and voltages present on the power cable.
    Type: Application
    Filed: November 11, 2014
    Publication date: September 8, 2016
    Inventors: Guillaume Grente, Anthony Thornberry, David Funkhouser, Bryon Western
  • Publication number: 20140311235
    Abstract: A system and method of monitoring a pressure, temperature, and/or vibration of a hostile environment without requiring the use of active electronics or an oscillator circuit in that environment. The system and method interrogate a resonant pressure sensor and a resonant or passive temperature sensor connected to a transmission line and located at least 100 feet (30.48 m) away from a network analyzer. The system and method use the reflected frequencies from the sensors to determine the pressure, temperature, and/or vibration. If the sensors are networked by the transmission line or a network filter, the reflected portion can include the reflected transmission energy. The applied signal and reflected portion travel along the transmission line, which is preferably impedance matched to that of the system. If a multi-conductor cable is used, the effects of the cable's length and temperature are compensated for via a system calibration when in field use.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 23, 2014
    Applicant: Sercel-GRC Corporation
    Inventors: Goutham R. Kirikera, William M. Patton, Suzanne M. Behr, Tracy Sawyer, Anthony Thornberry