Patents by Inventor Anto Yasaka

Anto Yasaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150053866
    Abstract: There is provided a repair apparatus including a gas field ion source which includes an ion generation section including a sharpened tip, a cooling unit which cools the tip, an ion beam column which forms a focused ion beam by focusing ions of a gas generated in the gas field ion source, a sample stage which moves while a sample to be irradiated with the focused ion beam is placed thereon, a sample chamber which accommodates at least the sample stage therein, and a control unit which repairs a mask or a mold for nano-imprint lithography, which is the sample, with the focused ion beam formed by the ion beam column. The gas field ion source generates nitrogen ions as the ions, and the tip is constituted by an iridium single crystal capable of generating the ions.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Applicant: Hitachi High-Tech Science Corporation
    Inventors: Fumio Aramaki, Anto Yasaka, Osamu Matsuda, Yasuhiko Sugiyama, Hiroshi Oba, Tomokazu Kozakai, Kazuo Aita
  • Patent number: 8963100
    Abstract: A focused ion beam apparatus has an ion source chamber in which is disposed an emitter for emitting ions. A gas supply unit supplies nitrogen gas to the ion source chamber so that the nitrogen gas adsorbs on the surface of the emitter, and the gas supply unit maintains the pressure in the ion source chamber in the range 1.0×10?6 Pa to 1.0×10?2 Pa. An extracting electrode is spaced from the emitter, and a voltage is applied to the extracting electrode to ionize the adsorbed nitrogen gas and extract nitrogen ions in the form of an ion beam. A temperature control unit controls the temperature of the emitter.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: February 24, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Anto Yasaka, Fumio Aramaki, Yasuhiko Sugiyama, Tomokazu Kozakai, Osamu Matsuda
  • Publication number: 20150047079
    Abstract: There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with <210> orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Applicant: Hitachi High-Tech Science Corporation
    Inventors: Tomokazu Kozakai, Osamu Matsuda, Yasuhiko Sugiyama, Kazuo Aita, Fumio Aramaki, Anto Yasaka, Hiroshi Oba
  • Publication number: 20140291542
    Abstract: There is provided an emitter structure, a gas ion source including the emitter structure, and a focused ion beam system including the gas ion source. The emitter structure includes a pair of conductive pins which are fixed to a base member, a filament which is connected between the pair of conductive pins, and an emitter which is connected to the filament and has a sharp tip. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 2, 2014
    Applicant: Hitachi High-Tech Science Corporation
    Inventors: Anto YASAKA, Yasuhiko SUGIYAMA, Hiroshi OBA
  • Publication number: 20140246397
    Abstract: A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yasuhiko SUGIYAMA, Kazuo AITA, Fumio ARAMAKI, Tomokazu KOZAKAI, Osamu MATSUDA, Anto YASAKA
  • Patent number: 8764994
    Abstract: A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 1, 2014
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Yasuhiko Sugiyama, Kazuo Aita, Fumio Aramaki, Tomokazu Kozakai, Osamu Matsuda, Anto Yasaka
  • Publication number: 20130248483
    Abstract: A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 26, 2013
    Applicant: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yasuhiko SUGIYAMA, Kazuo AITA, Fumio ARAMAKI, Tomokazu KOZAKAI, Osamu MATSUDA, Anto YASAKA
  • Publication number: 20130224889
    Abstract: A charged particle beam apparatus is provided that enables faster semiconductor film deposition than the conventional deposition that uses silicon hydrides and halides as source gases. The charged particle beam apparatus includes a charged particle source 1, a condenser lens electrode 2, a blanking electrode 3, a scanning electrode 4, a sample stage 10 on which a sample 9 is mounted, a secondary charged particle detector 8 that detects a secondary charged particle 7 generated from the sample 9 in response to the charged particle beam irradiation, a reservoir 14 that accommodates cyclopentasilane as a source gas, and a gas gun 11 that supplies the source gas to the sample 9.
    Type: Application
    Filed: September 22, 2011
    Publication date: August 29, 2013
    Applicants: HITACHI HIGH-TECH SCIENCE CORPORATION, JSR CORPORATION, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Yoshihiro Koyama, Anto Yasaka, Tatsuya Shimoda, Yasuo Matsuki, Ryo Kawajiri
  • Patent number: 8460842
    Abstract: A defect repair apparatus for an EUV mask has an ion beam column that scans and irradiates the EUV mask with a focused hydrogen ion beam such that no region of the EUV mask receives an amount of beam irradiation exceeding 4×1016 ions/cm2. The ion beam column comprises a gas field ion source having an emitter with a pointed tip end that emits hydrogen ions that form the hydrogen ion beam, and an ion optical system that focuses and scans the hydrogen ion beam onto the EUV mask. A detector detects secondary charged particles generated from the EUV mask when irradiated with the hydrogen ion beam, and an image forming section forms and displays an observation image of the EUV mask on the basis of an output signal from the detector so that a defect in the EUV mask and the progress of the defect repair can be observed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 11, 2013
    Assignee: SII NanoTechnology Inc.
    Inventors: Takashi Ogawa, Hiroshi Oba, Fumio Aramaki, Anto Yasaka
  • Publication number: 20130099133
    Abstract: Provided is a focused ion beam apparatus including a gas field ion source, the gas field ion source including: an emitter (41) for emitting an ion beam (1); an ion source chamber (40) for containing the emitter (41); a gas supply unit (46) for supplying nitrogen to the ion source chamber (40); an extracting electrode (49) to which a voltage for ionizing the nitrogen and for extracting nitrogen ions is applied; and a temperature control unit (34) for cooling the emitter (41).
    Type: Application
    Filed: October 18, 2012
    Publication date: April 25, 2013
    Inventors: Anto YASAKA, Fumio ARAMAKI, Yasuhiko SUGIYAMA, Tomokazu KOZAKAI, Osamu MATSUDA
  • Publication number: 20110189593
    Abstract: A defect repair apparatus for an EUV mask includes: a gas field ion source that generates a hydrogen ion beam; an ion optical system that scans and irradiates the hydrogen ion beam by focusing the hydrogen ion beam onto the EUV mask; a sample stage on which to place the EUV mask; a detector that detects secondary charged-particles generated from the EUV mask; and an image forming unit that forms an observation image of the EUV mask on the basis of an output signal from the detector.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Inventors: Takashi Ogawa, Hiroshi Oba, Fumio Aramaki, Anto Yasaka
  • Publication number: 20070267579
    Abstract: The object of the present invention is to provide a method for solving the problem of surface damage due to gallium ion irradiation that poses a problem when carrying out mask repair using currently established FIB techniques, and the problem of residual gallium, and to provide a device realizing this method. The device of the present invention has an electron beam lens barrel that can carry out processing, as well as an FIB lens barrel, provided inside the same sample chamber, which means that a mask repair method of the present invention, in correction processing to remove redundant sections such as a mask opaque defect, phase shift film bump defect or a glass substrate cut remnant defect, comprises a step of coarse correction by etching using a focused ion beam and a step of finishing processing using an electron beam, to remove surface damage due to gallium irradiation, and residual gallium.
    Type: Application
    Filed: December 28, 2006
    Publication date: November 22, 2007
    Inventors: Yasuhiko Sugiyama, Junichi Tashiro, Anto Yasaka
  • Patent number: 7172839
    Abstract: The object of the present invention is to provide a method for solving the problem of surface damage due to gallium ion irradiation that poses a problem when carrying out mask repair using currently established FIB techniques, and the problem of residual gallium, and to provide a device realizing this method. The device of the present invention has an electron beam lens barrel that can carry out processing, as well as an FIB lens barrel, provided inside the same sample chamber, which means that a mask repair method of the present invention, in correction processing to remove redundant sections such as a mask opaque defect, phase shift film bump defect or a glass substrate cut remnant defect, comprises a step of coarse correction by etching using a focused ion beam and a step of finishing processing using an electron beam, to remove surface damage due to gallium irradiation, and residual gallium.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: February 6, 2007
    Assignee: SII NanoTechnology Inc.
    Inventors: Yasuhiko Sugiyama, Junichi Tashiro, Anto Yasaka
  • Publication number: 20040131953
    Abstract: The object of the present invention is to provide a method for solving the problem of surface damage due to gallium ion irradiation that poses a problem when carrying out mask repair using currently established FIB techniques, and the problem of residual gallium, and to provide a device realizing this method. The device of the present invention has an electron beam lens barrel that can carry out processing, as well as an FIB lens barrel, provided inside the same sample chamber, which means that a mask repair method of the present invention, in correction processing to remove redundant sections such as a mask opaque defect, phase shift film bump defect or a glass substrate cut remnant defect, comprises a step of coarse correction by etching using a focused ion beam and a step of finishing processing using an electron beam, to remove surface damage due to gallium irradiation, and residual gallium.
    Type: Application
    Filed: November 24, 2003
    Publication date: July 8, 2004
    Inventors: Yasuhiko Sugiyama, Junichi Tashiro, Anto Yasaka
  • Patent number: 5153440
    Abstract: A method of stabilizing the operation of a liquid metal ion source in a focussed ion beam apparatus, the ion source being composed of a metal needle having a pointed downstream end and a lateral surface, a reservoir for supplying a liquid metal to the surface of the needle, a device for heating the metal, an extraction electrode having a small aperture disposed at a position opposite the metal needle for allowing an ion current to pass through the aperture, and a circuit for applying a voltage between the metal needle and the extraction electrode. According to the method the temperature of the liquid metal in the reservoir is normally maintained at a first value corresponding to a usual operating temperature value, and the temperature of the liquid metal is temporarily raised to a second value higher than the first value, by operation of the heating device, in order to maintain stable long term operation of the ion source.
    Type: Grant
    Filed: April 3, 1991
    Date of Patent: October 6, 1992
    Assignee: Seiko Instruments, Inc.
    Inventor: Anto Yasaka
  • Patent number: 4902530
    Abstract: According to the present invention, an apparatus for correcting a pattern film wherein an organic compound vapor is directed to a defect in a mask or IC while an ion beam is irradiated and scanned for depositing film on the white defect is furnished with a circuit for calculating film deposition area based on the reproduced image of a mask pattern, whereby elongating the total scanning time by inserting blank time in the scanning time, during which the ion beam is not irradiated (this operation is hereinafter referred to as blanking), when the ratio of the film deposition area to the ion beam current for an organic compound directed by a gas gun is lower than a predetermined level. Because of this operation, the molecule of the organic compound vapor is sufficiently deposited on the mask of IC surface, and therefore, a film having good light shielding or good conductance can be deposited with strong bonding.
    Type: Grant
    Filed: February 19, 1988
    Date of Patent: February 20, 1990
    Assignee: Seiko Instruments Inc.
    Inventors: Anto Yasaka, Yoshitomo Nakagawa, Mitsuyoshi Sato