Patents by Inventor Antoine Moreau

Antoine Moreau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210331796
    Abstract: A low noise aircraft comprising a fuselage comprising a nose section, a cabin and a tail comprising an empennage, the profile of the fuselage tightening towards the tail, two wings mounted on opposite sides of the fuselage, two engines, each engine mounted on a pylon on a respective side of the fuselage, two propellers, each propeller joined to and positioned behind a respective the engine, at least one cabin door to access the cabin, and landing gear, wherein the engines are positioned above the wings, wherein the propellers are positioned at a rear end of each engine such that the propellers push the engines, and wherein the propellers are positioned behind the inhabitable zone of the cabin.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 28, 2021
    Inventor: Antoine MOREAU
  • Patent number: 10976636
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: April 13, 2021
    Assignee: Duke University
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock
  • Publication number: 20170357139
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Application
    Filed: February 2, 2017
    Publication date: December 14, 2017
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock
  • Patent number: 9606414
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 28, 2017
    Assignee: Duke University
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock
  • Publication number: 20150062686
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 5, 2015
    Applicant: Duke University
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock