Patents by Inventor Antonio Arion Gellineau

Antonio Arion Gellineau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955391
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: April 9, 2024
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Publication number: 20230228692
    Abstract: Methods and systems for monitoring the quality of a semiconductor measurement in a targeted manner are presented herein. Rather than relying on one or more general indices to determine overall measurement quality, one or more targeted measurement quality indicators are determined. Each targeted measurement quality indicator provides insight into whether a specific operational issue is adversely affecting measurement quality. In this manner, the one or more targeted measurement quality indicators not only highlight deficient measurements, but also provide insight into specific operational issues contributing to measurement deficiency. In some embodiments, values of one or more targeted measurement quality indicators are determined based on features extracted from measurement data.
    Type: Application
    Filed: January 18, 2022
    Publication date: July 20, 2023
    Inventors: Antonio Arion Gellineau, Andrei V. Shchegrov, Hyowon Park, Pavan Gurudath, Christopher Liman, Jung Heon Song
  • Patent number: 11698251
    Abstract: Methods and systems for performing overlay and edge placement errors based on Soft X-Ray (SXR) scatterometry measurement data are presented herein. Short wavelength SXR radiation focused over a small illumination spot size enables measurement of design rule targets or in-die active device structures. In some embodiments, SXR scatterometry measurements are performed with SXR radiation having energy in a range from 10 to 5,000 electronvolts. As a result, measurements at SXR wavelengths permit target design at process design rules that closely represents actual device overlay. In some embodiments, SXR scatterometry measurements of overlay and shape parameters are performed simultaneously from the same metrology target to enable accurate measurement of Edge Placement Errors. In another aspect, overlay of aperiodic device structures is estimated based on SXR measurements of design rule targets by calibrating the SXR measurements to reference measurements of the actual device target.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: July 11, 2023
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Nadav Gutman, Alexander Kuznetsov, Antonio Arion Gellineau
  • Publication number: 20230169255
    Abstract: Methods and systems for generating optimized geometric models of semiconductor structures parameterized by a set of variables in a latent mathematical space are presented herein. Reference shape profiles characterize the shape of a semiconductor structure of interest over a process space. A set of observable geometric variables describing the reference shape profiles is transformed to a set of latent variables. The number of latent variables is smaller than the number of observable geometric variables, thus the dimension of the parameter space employed to characterize the structure of interest is reduced. This dramatically reduces the mathematical dimension of the measurement problem to be solved. As a result, measurement model solutions involving regression are more robust, and training of machine learning based measurement models is simplified.
    Type: Application
    Filed: November 23, 2022
    Publication date: June 1, 2023
    Inventors: Stilian Ivanov Pandev, Arvind Jayaraman, Proteek Chandan Roy, Hyowon Park, Antonio Arion Gellineau, Sungchol Yoo
  • Patent number: 11519719
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by transmission small angle x-ray scatterometry (TSAXS) systems having relatively small tool footprint are described herein. The methods and systems described herein enable Q space resolution adequate for metrology of semiconductor structures with reduced optical path length. In general, the x-ray beam is focused closer to the wafer surface for relatively small targets and closer to the detector for relatively large targets. In some embodiments, a high resolution detector with small point spread function (PSF) is employed to mitigate detector PSF limits on achievable Q resolution. In some embodiments, the detector locates an incident photon with sub-pixel accuracy by determining the centroid of a cloud of electrons stimulated by the photon conversion event. In some embodiments, the detector resolves one or more x-ray photon energies in addition to location of incidence.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 6, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Antonio Arion Gellineau, Sergey Zalubovsky
  • Patent number: 11519869
    Abstract: Methods and systems for improving a measurement recipe describing a sequence of measurements employed to characterize semiconductor structures are described herein. A measurement recipe is repeatedly updated before a queue of measurements defined by the previous measurement recipe is fully executed. In some examples, an improved measurement recipe identifies a minimum set of measurement options that increases wafer throughput while meeting measurement uncertainty requirements. In some examples, measurement recipe optimization is controlled to trade off measurement robustness and measurement time. This enables flexibility in the case of outliers and process excursions. In some examples, measurement recipe optimization is controlled to minimize any combination of measurement uncertainty, measurement time, move time, and target dose. In some examples, a measurement recipe is updated while measurement data is being collected.
    Type: Grant
    Filed: February 16, 2019
    Date of Patent: December 6, 2022
    Assignee: KLA Tencor Corporation
    Inventor: Antonio Arion Gellineau
  • Publication number: 20220268714
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 25, 2022
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 11313816
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 26, 2022
    Assignee: KLA Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Publication number: 20210407864
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Patent number: 11145559
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 12, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Publication number: 20210207956
    Abstract: Methods and systems for performing overlay and edge placement errors based on Soft X-Ray (SXR) scatterometry measurement data are presented herein. Short wavelength SXR radiation focused over a small illumination spot size enables measurement of design rule targets or in-die active device structures. In some embodiments, SXR scatterometry measurements are performed with SXR radiation having energy in a range from 10 to 5,000 electronvolts. As a result, measurements at SXR wavelengths permit target design at process design rules that closely represents actual device overlay. In some embodiments, SXR scatterometry measurements of overlay and shape parameters are performed simultaneously from the same metrology target to enable accurate measurement of Edge Placement Errors. In another aspect, overlay of aperiodic device structures is estimated based on SXR measurements of design rule targets by calibrating the SXR measurements to reference measurements of the actual device target.
    Type: Application
    Filed: December 30, 2020
    Publication date: July 8, 2021
    Inventors: Andrei V. Shchegrov, Nadav Gutman, Alexander Kuznetsov, Antonio Arion Gellineau
  • Patent number: 10983227
    Abstract: Methods and systems for more efficient X-Ray scatterometry measurements of on-device structures are presented herein. X-Ray scatterometry measurements of one or more structures over a measurement area includes a decomposition of the one or more structures into a plurality of sub-structures, a decomposition of the measurement area into a plurality of sub-areas, or both. The decomposed structures, measurement areas, or both, are independently simulated. The scattering contributions of each of the independently simulated decomposed structures are combined to simulate the actual scattering of the measured structures within the measurement area. In a further aspect, measured intensities and modelled intensities including one or more incidental structures are employed to perform measurement of structures of interest. In other further aspects, measurement decomposition is employed to train a measurement model and to optimize a measurement recipe for a particular measurement application.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: April 20, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: John Hench, Antonio Arion Gellineau, Alexander Kuznetsov
  • Publication number: 20210088325
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by transmission small angle x-ray scatterometry (TSAXS) systems having relatively small tool footprint are described herein. The methods and systems described herein enable Q space resolution adequate for metrology of semiconductor structures with reduced optical path length. In general, the x-ray beam is focused closer to the wafer surface for relatively small targets and closer to the detector for relatively large targets. In some embodiments, a high resolution detector with small point spread function (PSF) is employed to mitigate detector PSF limits on achievable Q resolution. In some embodiments, the detector locates an incident photon with sub-pixel accuracy by determining the centroid of a cloud of electrons stimulated by the photon conversion event. In some embodiments, the detector resolves one or more x-ray photon energies in addition to location of incidence.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 25, 2021
    Inventors: Andrei V. Shchegrov, Antonio Arion Gellineau, Sergey Zalubovsky
  • Publication number: 20200335406
    Abstract: Methods and systems for measuring a complex semiconductor structure based on measurement data before and after a critical process step are presented. In some embodiments, the measurement is based on x-ray scatterometry measurement data. In one aspect, a measurement is based on fitting combined measurement data to a simplified geometric model of the measured structure. In some embodiments, the combined measurement data is determined by subtraction of a measured diffraction pattern before the critical process step from a measured diffraction pattern after the critical process step. In some embodiments, the simplified geometric model includes only the features affected by the critical process step. In another aspect, a measurement is based on a combined data set and a trained signal response metrology (SRM) model. In another aspect, a measurement is based on actual measurement data after the critical process step and simulated measurement data before the critical process step.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 22, 2020
    Inventors: Christopher Liman, Antonio Arion Gellineau, Andrei V. Shchegrov, Sungchul Yoo
  • Publication number: 20200300790
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Publication number: 20200303265
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Patent number: 10775323
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 10767978
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by transmission small angle x-ray scatterometry (TSAXS) systems having relatively small tool footprint are described herein. The methods and systems described herein enable Q space resolution adequate for metrology of semiconductor structures with reduced optical path length. In general, the x-ray beam is focused closer to the wafer surface for relatively small targets and closer to the detector for relatively large targets. In some embodiments, a high resolution detector with small point spread function (PSF) is employed to mitigate detector PSF limits on achievable Q resolution. In some embodiments, the detector locates an incident photon with sub-pixel accuracy by determining the centroid of a cloud of electrons stimulated by the photon conversion event. In some embodiments, the detector resolves one or more x-ray photon energies in addition to location of incidence.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: September 8, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Antonio Arion Gellineau, Sergey Zalubovsky
  • Patent number: 10727142
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: July 28, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Patent number: 10504759
    Abstract: Methods and systems for measuring process induced errors in a multiple patterning semiconductor fabrication process based on measurements of a specimen and process information from one or more previous process steps employed to fabricate the specimen are presented herein. A metrology tool is employed after a number of process steps have been executed. The metrology tool measures structural parameters of interest of metrology targets on the wafer based on measured signals and process information, and communicates correctable process parameter values to one or more process tools involved in the previous process steps. When executed by the appropriate process tool, the correctable process parameter values reduce process induced errors in the geometry of the structures fabricated by the process flow. In another aspect, multiple metrology tools are used to control a fabrication process in combination with process information from one or more process steps in the process flow.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 10, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Kuznetsov, Antonio Arion Gellineau, Andrei V. Shchegrov