Patents by Inventor Antonio Corcoles-Gonzalez

Antonio Corcoles-Gonzalez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960970
    Abstract: Systems and techniques that facilitate strategic pausing for quantum state leakage mitigation are provided. In various embodiments, a system can comprise a detection component that can detect a quantum state leakage associated with one or more qubits. In various aspects, the system can further comprise a pause component that can, in response to detecting the quantum state leakage, generate a time pause prior to execution of a quantum circuit on the one or more qubits. In various embodiments, the pause component can generate the time pause after execution of a previous quantum circuit on the one or more qubits, where the quantum state leakage arises during the execution of the previous quantum circuit. In some cases, the quantum state leakage can decay during the time pause.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: April 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oliver Dial, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay
  • Publication number: 20240020569
    Abstract: One or more systems, devices, computer program products and/or computer-implemented methods of use provided herein relate to a process to dynamically determine a threshold for determining a state of a qubit and apply the threshold for operating a pulse to de-excite the qubit. A system can comprise a memory that stores computer executable components, and a processor that executes the computer executable components stored in the memory, wherein the computer executable components can comprise a decision component that is configured to determine a threshold of a plurality of thresholds to apply to measurement of a state of a qubit based on a probability distribution of state of the qubit, wherein a measurement at one side of the threshold is representative of the qubit being in the ground state, and wherein a measurement at another side of the threshold is representative of the qubit being in an excited state.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 18, 2024
    Inventors: Ken Inoue, MAIKA TAKITA, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20240013077
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Application
    Filed: March 14, 2023
    Publication date: January 11, 2024
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Patent number: 11803441
    Abstract: Techniques regarding calibrating one or more quantum decoder algorithms are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a correlation inversion decoder component that can calibrate a quantum decoder algorithm for decoding a quantum error-correcting code by estimating hyperedge probabilities of a decoding hypergraph that are consistent with a syndrome dataset.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: October 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Edward Hong Chen, Andrew W. Cross, Youngseok Kim, Neereja Sundaresan, Maika Takita, Antonio Corcoles-Gonzalez, Theodore James Yoder
  • Patent number: 11802663
    Abstract: Techniques facilitating multiple cryogenic systems sectioned within a common vacuum space are provided. In one example, a cryostat can comprise a plurality of thermal stages and a thermal switch. The plurality of thermal stages can intervene between a 4-Kelvin (K) stage and a Cold Plate stage. The plurality of thermal stages can include a Still stage and an intermediate thermal stage that can be directly coupled mechanically to the Still stage via a support rod. The thermal switch can be coupled to the intermediate thermal stage and an adjacent thermal stage. The thermal switch can facilitate modifying a thermal profile of the cryostat by providing a switchable thermal path between the intermediate thermal stage and the adjacent thermal stage.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: October 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Antonio Corcoles-Gonzalez, Patryk Gumann, Jerry M. Chow
  • Patent number: 11636372
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 25, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20230094612
    Abstract: Techniques regarding calibrating one or more quantum decoder algorithms are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a correlation inversion decoder component that can calibrate a quantum decoder algorithm for decoding a quantum error-correcting code by estimating hyperedge probabilities of a decoding hypergraph that are consistent with a syndrome dataset.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Edward Hong Chen, Andrew W. Cross, Youngseok Kim, Neereja Sundaresan, Maika Takita, Antonio Corcoles-Gonzalez, Theodore James Yoder
  • Patent number: 11574227
    Abstract: A method for characterizing noise in a quantum system, the quantum system including a plurality of qubits and a plurality of entangling gates native to the quantum system, includes generating a random quantum circuit on a quantum processor, the random quantum circuit comprising the plurality of entangling gates native to the quantum system. The method includes running a simulation of the random quantum circuit on a classical computer a plurality of times to obtain ideal outcomes, and running the random quantum circuit on the quantum processor a plurality of times to obtain experimental outcomes. The method includes grouping the experimental outcomes based on probabilities of the ideal outcomes to obtain a first distribution, and grouping the experimental outcomes based on probabilities of the experimental outcomes to obtain a second distribution. The method includes characterizing noise in the quantum system based on the first distribution and the second distribution.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 7, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jinsung Kim, Lev S. Bishop, John A. Smolin, Antonio Corcoles-Gonzalez
  • Publication number: 20230010740
    Abstract: Techniques regarding tiling a CR gate configuration to one or more lattices characterizing quantum circuit topologies are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a tiling component that can generate a cross-resonance gate configuration that delineates a control qubit assignment and a target qubit assignment in conjunction with a frequency allocation onto a lattice characterizing a quantum circuit topology.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventors: Moein Malekakhlagh, Jared Barney Hertzberg, Easwar Magesan, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay, Jason S. Orcutt
  • Publication number: 20220221108
    Abstract: Techniques facilitating multiple cryogenic systems sectioned within a common vacuum space are provided. In one example, a cryostat can comprise a plurality of thermal stages and a thermal switch. The plurality of thermal stages can intervene between a 4-Kelvin (K) stage and a Cold Plate stage. The plurality of thermal stages can include a Still stage and an intermediate thermal stage that can be directly coupled mechanically to the Still stage via a support rod. The thermal switch can be coupled to the intermediate thermal stage and an adjacent thermal stage. The thermal switch can facilitate modifying a thermal profile of the cryostat by providing a switchable thermal path between the intermediate thermal stage and the adjacent thermal stage.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Antonio Corcoles-Gonzalez, Patryk Gumann, Jerry M. Chow
  • Publication number: 20220164692
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an output receiving component that can receive, in response to a request, output representative of a quantum state of a qubit of a quantum computing device, and a classifying component that classifies the quantum state of the qubit of the quantum computing device based on the output representative of the quantum state of the qubit. The system can further include a configuring component that can configure the classifying component based on a characteristic of the request.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 26, 2022
    Inventors: Ken Inoue, Maika Takita, Antonio Corcoles-Gonzalez, Scott Douglas Lekuch
  • Publication number: 20220147855
    Abstract: Systems and techniques that facilitate strategic pausing for quantum state leakage mitigation are provided. In various embodiments, a system can comprise a detection component that can detect a quantum state leakage associated with one or more qubits. In various aspects, the system can further comprise a pause component that can, in response to detecting the quantum state leakage, generate a time pause prior to execution of a quantum circuit on the one or more qubits. In various embodiments, the pause component can generate the time pause after execution of a previous quantum circuit on the one or more qubits, where the quantum state leakage arises during the execution of the previous quantum circuit. In some cases, the quantum state leakage can decay during the time pause.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 12, 2022
    Inventors: Oliver Dial, Antonio Corcoles-Gonzalez, Maika Takita, David C. Mckay
  • Patent number: 11295223
    Abstract: Techniques and a system to facilitate quantum computation are provided. In one example, a system includes a processor that executes computer executable components stored in a memory; a quantum feature map circuit component that estimates a kernel associated with a feature map; and a support vector machine component that performs a classification using the estimated kernel.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 5, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Antonio Corcoles-Gonzalez, Paul Kristan Temme, Jay M. Gambetta
  • Publication number: 20210049492
    Abstract: A method for characterizing noise in a quantum system, the quantum system including a plurality of qubits and a plurality of entangling gates native to the quantum system, includes generating a random quantum circuit on a quantum processor, the random quantum circuit comprising the plurality of entangling gates native to the quantum system. The method includes running a simulation of the random quantum circuit on a classical computer a plurality of times to obtain ideal outcomes, and running the random quantum circuit on the quantum processor a plurality of times to obtain experimental outcomes. The method includes grouping the experimental outcomes based on probabilities of the ideal outcomes to obtain a first distribution, and grouping the experimental outcomes based on probabilities of the experimental outcomes to obtain a second distribution. The method includes characterizing noise in the quantum system based on the first distribution and the second distribution.
    Type: Application
    Filed: August 13, 2019
    Publication date: February 18, 2021
    Inventors: Jinsung Kim, Lev S. Bishop, John A. Smolin, Antonio Corcoles-Gonzalez
  • Patent number: 10810507
    Abstract: Systems, computer-implemented methods, and computer program products to facilitate external port measurement of qubit port responses are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an analysis component that can analyze responses of a multi-mode readout device coupled to a qubit. The computer executable components can further comprise an assignment component that can assign a readout state of the qubit based on the responses. In some embodiments, the multi-mode readout device can be electrically coupled to at least one of the qubit or an environment of the qubit based on a defined electrical coupling value.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: October 20, 2020
    Assignee: International Business Machines Corporation
    Inventors: Paul Kristan Temme, Salvatore Bernardo Olivadese, Antonio Corcoles-Gonzalez, Jay M. Gambetta, Lev Samuel Bishop
  • Publication number: 20200285947
    Abstract: Implementing a hybrid classical-quantum neural network includes constructing, by at least a first processor, a neural network for classification of input data. The neural network includes a plurality of neural network components. The at least a first processor initiates training of the neural network using training data. The at least a first processor identifies one or more of the plurality of neural network components for replacement. A quantum processor constructs a quantum component corresponding to the one or more network components. The one or more identified neural network components of the neural network are replaced with the quantum component to construct a hybrid classical-quantum neural network.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: International Business Machines Corporation
    Inventors: John A. Gunnels, Antonio Corcoles-Gonzalez, Jay M. Gambetta, Lior Horesh, Paul Kristan Temme
  • Publication number: 20200210879
    Abstract: Systems, computer-implemented methods, and computer program products to facilitate external port measurement of qubit port responses are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an analysis component that can analyze responses of a multi-mode readout device coupled to a qubit. The computer executable components can further comprise an assignment component that can assign a readout state of the qubit based on the responses. In some embodiments, the multi-mode readout device can be electrically coupled to at least one of the qubit or an environment of the qubit based on a defined electrical coupling value.
    Type: Application
    Filed: March 5, 2020
    Publication date: July 2, 2020
    Inventors: Paul Kristan Temme, Salvatore Bernardo Olivadese, Antonio Corcoles-Gonzalez, Jay M. Gambetta, Lev Samuel Bishop
  • Patent number: 10650322
    Abstract: Systems, computer-implemented methods, and computer program products to facilitate external port measurement of qubit port responses are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an analysis component that can analyze responses of a multi-mode readout device coupled to a qubit. The computer executable components can further comprise an assignment component that can assign a readout state of the qubit based on the responses. In some embodiments, the multi-mode readout device can be electrically coupled to at least one of the qubit or an environment of the qubit based on a defined electrical coupling value.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 12, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Kristan Temme, Salvatore Bernardo Olivadese, Antonio Corcoles-Gonzalez, Jay M. Gambetta, Lev Samuel Bishop
  • Patent number: 10593858
    Abstract: A technique relates to a structure. A first surface includes an inductive element of a resonator. A second surface includes a first portion of a capacitive element of the resonator and at least one qubit. A second portion of the capacitive element of the resonator is on the first surface.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Markus Brink, Antonio Corcoles-Gonzalez, Jay M. Gambetta, Sami Rosenblatt, Firat Solgun
  • Publication number: 20190378025
    Abstract: Techniques and a system to facilitate quantum computation are provided. In one example, a system includes a processor that executes computer executable components stored in a memory; a quantum feature map circuit component that estimates a kernel associated with a feature map; and a support vector machine component that performs a classification using the estimated kernel.
    Type: Application
    Filed: November 9, 2018
    Publication date: December 12, 2019
    Inventors: Antonio Corcoles-Gonzalez, Paul Kristan Temme, Jay M. Gambetta