Patents by Inventor Anupama Bowonder

Anupama Bowonder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11374100
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with a contact etch stop layer are described. In an example, an integrated circuit structure includes a fin including a semiconductor material, the fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first epitaxial source or drain structure is embedded in the fin at the first side of the gate stack. A second epitaxial source or drain structure is embedded in the fin at the second side of the gate stack, the first and second epitaxial source or drain structures including a lower semiconductor layer, an intermediate semiconductor layer and an upper semiconductor layer.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Rishabh Mehandru, Anupama Bowonder, Biswajeet Guha, Anand Murthy, Tahir Ghani
  • Publication number: 20220131007
    Abstract: Epitaxial oxide plugs are described for imposing strain on a channel region of a proximate channel region of a transistor. The oxide plugs form epitaxial and coherent contact with one or more source and drain regions adjacent to the strained channel region. The epitaxial oxide plugs can be used to either impart strain to an otherwise unstrained channel region (e.g., for a semiconductor body that is unstrained relative to an underlying buffer layer), or to restore, maintain, or increase strain within a channel region of a previously strained semiconductor body. The epitaxial crystalline oxide plugs have a perovskite crystal structure in some embodiments.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventors: Karthik JAMBUNATHAN, Biswajeet GUHA, Anupama BOWONDER, Anand S. MURTHY, Tahir GHANI
  • Patent number: 11251302
    Abstract: Epitaxial oxide plugs are described for imposing strain on a channel region of a proximate channel region of a transistor. The oxide plugs form epitaxial and coherent contact with one or more source and drain regions adjacent to the strained channel region. The epitaxial oxide plugs can be used to either impart strain to an otherwise unstrained channel region (e.g., for a semiconductor body that is unstrained relative to an underlying buffer layer), or to restore, maintain, or increase strain within a channel region of a previously strained semiconductor body. The epitaxial crystalline oxide plugs have a perovskite crystal structure in some embodiments.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Biswajeet Guha, Anupama Bowonder, Anand S. Murthy, Tahir Ghani
  • Patent number: 11152461
    Abstract: A semiconductor device is described that includes a first semiconductor layer conformally disposed on at least a portion of a source region and a second semiconductor layer conformally disposed on at least a portion of a drain region between the source/drain regions and corresponding gate spacers. The semiconductor layer can prevent diffusion and/or segregation of dopants from the source and drain regions into the gate spacers of the gate stack. Maintaining the intended location of dopant atoms in the source region and drain region improves the electrical characteristics of the semiconductor device including the external resistance (“Rext”) of the semiconductor device.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Anupama Bowonder, Biswajeet Guha, Tahir Ghani, Stephen M. Cea, William Hsu, Szuya S Liao, Pratik A. Patel
  • Publication number: 20210257492
    Abstract: Multiple strain states in epitaxial transistor channel material may be achieved through the incorporation of stress-relief defects within a seed material. Selective application of strain may improve channel mobility of one carrier type without hindering channel mobility of the other carrier type. A transistor structure may have a heteroepitaxial fin including a first layer of crystalline material directly on a second layer of crystalline material. Within the second layer, a number of defected regions of a threshold minimum dimension are present, which induces the first layer of crystalline material to relax into a lower-strain state. The defected regions may be introduced selectively, for example a through a masked impurity implantation, so that the defected regions may be absent in some transistor structures where a higher-strain state in the first layer of crystalline material is desired.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 19, 2021
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Patrick Keys, Sayed Hasan, Stephen Cea, Anupama Bowonder
  • Patent number: 11069795
    Abstract: Integrated circuits include fins including an upper/channel region and a lower/sub-channel region, the lower region having a first chemical composition and opposing sidewalls adjacent to an insulator material, and the upper region having a second chemical composition. A first width indicates the distance between the opposing sidewalls of the lower region at a first location is at least 1 nm wider than a second width indicating the distance between the opposing sidewalls of the upper region at a second location, the first location being within 10 nm of the second location (or otherwise relatively close to one another). The first chemical composition is distinct from the second chemical composition and includes a surface chemical composition at an outer surface of the opposing sidewalls of the lower region and a bulk chemical composition therebetween, the surface chemical composition including one or more of oxygen, nitrogen, carbon, chlorine, fluorine, and sulfur.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jun Sung Kang, Bruce E. Beattie, Anupama Bowonder, Biswajeet Guha, Ju H. Nam, Tahir Ghani
  • Publication number: 20210167210
    Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Cory BOMBERGER, Anand S. MURTHY, Tahir GHANI, Anupama BOWONDER
  • Publication number: 20210167209
    Abstract: Fin shaping, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has substantially vertical upper sidewalls and outwardly tapered lower sidewalls. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack, and a second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Szuya S. LIAO, Rahul PANDEY, Rishabh MEHANDRU, Anupama BOWONDER, Pratik PATEL
  • Patent number: 10886272
    Abstract: Techniques are disclosed for forming dual-strain fins for co-integrated n-MOS and p-MOS devices. The techniques can be used to monolithically form tensile-strained fins to be used for n-MOS devices and compressive-strained fins to be used for p-MOS devices utilizing the same substrate, such that a single integrated circuit (IC) can include both of the devices. In some instances, the oppositely stressed fins may be achieved by employing a relaxed SiGe (rSiGe) layer from which the tensile and compressive-strained material can be formed. In some instances, the techniques include the formation of tensile-stressed Si and/or SiGe fins and compressive-stressed SiGe and/or Ge fins using a single relaxed SiGe layer to enable the co-integration of n-MOS and p-MOS devices, where each set of devices includes preferred materials and preferred stress/strain to enhance their respective performance. In some cases, improvements of at least 25% in drive current can be obtained.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 5, 2021
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Rishabh Mehandru, Anupama Bowonder, Anand S. Murthy, Tahir Ghani
  • Publication number: 20200411640
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such transistor devices. In an embodiment a transistor comprises a substrate, and a fin that extends up from the substrate. In an embodiment, the fin comprises a source region, a drain region, and a channel region between the source region and the drain region. In an embodiment, the transistor further comprises and a cavity in the fin, where the cavity is below the channel region. In an embodiment, the transistor further comprises a gate stack over the fin.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Rishabh MEHANDRU, Stephen CEA, Anupama BOWONDER, Juhyung NAM, Willy RACHMADY
  • Publication number: 20200411513
    Abstract: Integrated circuits include fins including an upper/channel region and a lower/sub-channel region, the lower region having a first chemical composition and opposing sidewalls adjacent to an insulator material, and the upper region having a second chemical composition. A first width indicates the distance between the opposing sidewalls of the lower region at a first location is at least 1 nm wider than a second width indicating the distance between the opposing sidewalls of the upper region at a second location, the first location being within 10 nm of the second location (or otherwise relatively close to one another). The first chemical composition is distinct from the second chemical composition and includes a surface chemical composition at an outer surface of the opposing sidewalls of the lower region and a bulk chemical composition therebetween, the surface chemical composition including one or more of oxygen, nitrogen, carbon, chlorine, fluorine, and sulfur.
    Type: Application
    Filed: September 28, 2017
    Publication date: December 31, 2020
    Applicant: INTEL CORPORATION
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jun Sung Kang, Bruce E. Beattie, Anupama Bowonder, Biswajeet Guha, Ju H. Nam, Tahir Ghani
  • Publication number: 20200220014
    Abstract: Epitaxial oxide plugs are described for imposing strain on a channel region of a proximate channel region of a transistor. The oxide plugs form epitaxial and coherent contact with one or more source and drain regions adjacent to the strained channel region. The epitaxial oxide plugs can be used to either impart strain to an otherwise unstrained channel region (e.g., for a semiconductor body that is unstrained relative to an underlying buffer layer), or to restore, maintain, or increase strain within a channel region of a previously strained semiconductor body. The epitaxial crystalline oxide plugs have a perovskite crystal structure in some embodiments.
    Type: Application
    Filed: September 27, 2017
    Publication date: July 9, 2020
    Applicant: Intel Corporation
    Inventors: Karthik Jambunathan, Biswajeet Guha, Anupama Bowonder, Anand S. Murthy, Tahir Ghani
  • Publication number: 20200219975
    Abstract: Embodiments of the disclosure include integrated circuit structures having source or drain dopant diffusion blocking layers. In an example, an integrated circuit structure includes a fin including silicon. A gate structure is over a channel region of the fin, the gate structure having a first side opposite a second side. A first source or drain structure is at the first side of the gate structure. A second source or drain structure is at the second side of the gate structure. The first and second source or drain structures include a first semiconductor layer and a second semiconductor layer. The first semiconductor layer is in contact with the channel region of the fin, and the second semiconductor layer is on the first semiconductor layer. The first semiconductor layer has a greater concentration of germanium than the second semiconductor layer, and the second semiconductor layer includes boron dopant impurity atoms.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Cory BOMBERGER, Anand MURTHY, Anupama BOWONDER, Aaron BUDREVICH, Tahir GHANI
  • Publication number: 20200105759
    Abstract: Integrated circuit structures having asymmetric source and drain structures, and methods of fabricating integrated circuit structures having asymmetric source and drain structures, are described. For example, an integrated circuit structure includes a fin, and a gate stack over the fin. A first epitaxial source or drain structure is in a first trench in the fin at a first side of the gate stack. A second epitaxial source or drain structure is in a second trench in the fin at a second side of the gate stack, the second epitaxial source or drain structure deeper into the fin than the first epitaxial source or drain structure.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Anupama BOWONDER, Rishabh MEHANDRU, Mark BOHR, Tahir GHANI
  • Publication number: 20200006332
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having channel structures with sub-fin dopant diffusion blocking layers are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. The lower fin portion includes a dopant diffusion blocking layer on a first semiconductor layer doped to a first conductivity type. The upper fin portion includes a portion of a second semiconductor layer, the second semiconductor layer on the dopant diffusion blocking layer. An isolation structure is along sidewalls of the lower fin portion. A gate stack is over a top of and along sidewalls of the upper fin portion, the gate stack having a first side opposite a second side. A first source or drain structure at the first side of the gate stack.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Cory BOMBERGER, Anand MURTHY, Stephen CEA, Biswajeet GUHA, Anupama BOWONDER, Tahir GHANI
  • Publication number: 20200006504
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with a contact etch stop layer are described. In an example, an integrated circuit structure includes a fin including a semiconductor material, the fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first epitaxial source or drain structure is embedded in the fin at the first side of the gate stack. A second epitaxial source or drain structure is embedded in the fin at the second side of the gate stack, the first and second epitaxial source or drain structures including a lower semiconductor layer, an intermediate semiconductor layer and an upper semiconductor layer.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Cory BOMBERGER, Rishabh MEHANDRU, Anupama BOWONDER, Biswajeet GUHA, Anand MURTHY, Tahir GHANI
  • Publication number: 20200006488
    Abstract: Integrated circuit structures including a buried etch-stop layer to help control transistor source/drain depth are provided herein. The buried etch-stop layer addresses the issue of the source/drain etch (or epi-undercut (EUC) etch) going below the bottom of the active height of the channel region, as such an issue can result in un-controlled sub-fin leakage that causes power consumption degradation and other undesired performance issues. The buried etch-stop layer is formed below the channel material, such as in the epitaxial stack that includes the channel material, and acts to slow the removal of material after the channel material has been removed when etching to form the source/drain trenches. In other words, the buried etch-stop layer includes different material from the channel material that can be etched, for at least one given etchant, at a relatively slower rate than the channel material to help control the source/drain trench depth.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, BISWAJEET GUHA, ANUPAMA BOWONDER, ANAND S. MURTHY, TAHIR GHANI, STEPHEN M. CEA
  • Publication number: 20200006487
    Abstract: Techniques are disclosed for forming integrated circuits configured with self-aligned isolation walls and alternate channel materials. The alternate channel materials in such integrated circuits provide improved carrier mobility through the channel. In an embodiment, an isolation wall is between sets of fins, at least some of the fins including an alternate channel material. In such cases, the isolation wall laterally separates the sets of fins, and the alternate channel material provides improved carrier mobility. For instance, in the case of an NMOS device the alternate channel material is a material optimized for electron flow, and in the case of a PMOS device the alternate channel material is a material optimized for hole flow.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: INTEL IP CORPORATION
    Inventors: Biswajeet Guha, Anupama Bowonder, William Hsu, Szuya S. Liao, Mehmet Onur Baykan, Tahir Ghani
  • Publication number: 20200006491
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, integrated circuit structures having source or drain structures with a relatively high germanium content are described. In an example, an integrated circuit structure includes a fin including a semiconductor material. A gate stack is over an upper fin portion of the fin. A first epitaxial source or drain structure is embedded in the fin at a first side of the gate stack. A second epitaxial source or drain structure is embedded in the fin at a second side of the gate stack. The first and second epitaxial source or drain structures include silicon and germanium and have a same or greater atomic concentration of germanium than the fin.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Cory BOMBERGER, Anand MURTHY, Biswajeet GUHA, Anupama BOWONDER, Tahir GHANI
  • Publication number: 20190355811
    Abstract: A semiconductor device is described that includes a first semiconductor layer conformally disposed on at least a portion of a source region and a second semiconductor layer conformally disposed on at least a portion of a drain region between the source/drain regions and corresponding gate spacers. The semiconductor layer can prevent diffusion and/or segregation of dopants from the source and drain regions into the gate spacers of the gate stack. Maintaining the intended location of dopant atoms in the source region and drain region improves the electrical characteristics of the semiconductor device including the external resistance (“Rext”) of the semiconductor device.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Applicant: INTEL CORPORATION
    Inventors: Rishabh Mehandru, Anupama Bowonder, Biswajeet Guha, Tahir Ghani, Stephen M. Cea, William Hsu, SZUYA S. LIAO, PRATIK A. PATEL