Patents by Inventor Anuradha M. Agarwal

Anuradha M. Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11686659
    Abstract: A photonic aerosol particle sensor includes a microfluidic sensor chamber in which is disposed a plurality of photonic waveguide resonators each having a photonic waveguide on an underlying substrate, along a separate waveguide resonator path with a lateral width different than that of other photonic waveguide resonators. All waveguides in the plurality have a common vertical thickness of a common waveguide material having a refractive index that is larger than that of the underlying substrate material. An optical input connection couples light into the waveguide resonators. An aerosol particle input fluidically connected to the microfluidic chamber fluidically conveys aerosol particles to the chamber, and an aerosol particle output fluidically connected to the microfluidic chamber fluidically conveys aerosol particles out of the chamber.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: June 27, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Robin Singh, Anuradha M. Agarwal, Danhao Ma, Peter X. Su, Brian W. Anthony
  • Patent number: 11604147
    Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 ?m.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 14, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Eveline Postelnicu, Samarth Aggarwal, Kazumi Wada, Jurgen Michel, Lionel C. Kimerling, Michelle L. Clark, Anuradha M. Agarwal
  • Patent number: 11378552
    Abstract: A microscale photoacoustic sensor uses the detection of ultrasound waves generated by a sample in response to incident light absorption to perform photoacoustic spectroscopy, imaging, and microscopy. The microscale photoacoustic sensor, including components to excite a sample and detect ultrasound waves, may be integrated onto a single chip. The microscale photoacoustic sensor may excite a sample using a metasurface collimator. The metasurface collimator includes an array of diffraction grooves to collimate an excitation beam uniformly out of the plane of the sensor to create a wide and homogeneous beam spot. The microscale photoacoustic sensor may detect ultrasound waves using an optical photoacoustic transducer. The optical photoacoustic transducer includes a resonator on a mechanical membrane to detect ultrasound waves with high sensitivity. The microscale photoacoustic sensor may be used in applications such as deep-tissue neural imaging or microfluidic biological screening.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 5, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Robin Singh, Anuradha M. Agarwal, Brian Anthony
  • Publication number: 20220065793
    Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 ?m.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Eveline Postelnicu, Samarth Aggarwal, Kazumi WADA, Jurgen MICHEL, Lionel C. KIMERLING, Michelle L. Clark, Anuradha M. AGARWAL
  • Publication number: 20220042895
    Abstract: A photonic aerosol particle sensor includes a microfluidic sensor chamber in which is disposed a plurality of photonic waveguide resonators each having a photonic waveguide on an underlying substrate, along a separate waveguide resonator path with a lateral width different than that of other photonic waveguide resonators. All waveguides in the plurality have a common vertical thickness of a common waveguide material having a refractive index that is larger than that of the underlying substrate material. An optical input connection couples light into the waveguide resonators. An aerosol particle input fluidically connected to the microfluidic chamber fluidically conveys aerosol particles to the chamber, and an aerosol particle output fluidically connected to the microfluidic chamber fluidically conveys aerosol particles out of the chamber.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Robin Singh, Anuradha M. Agarwal, Danhao Ma, Peter X. Su, Brian W. Anthony
  • Patent number: 11204327
    Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 ?m.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 21, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Eveline Postelnicu, Samarth Aggarwal, Kazumi Wada, Jurgen Michel, Lionel C. Kimerling, Michelle L. Clark, Anuradha M. Agarwal
  • Patent number: 11181454
    Abstract: A photonic aerosol particle sensor includes a plurality of photonic waveguide resonators each having a photonic waveguide disposed along a separate waveguide resonator path and each photonic waveguide having a lateral waveguide width different than the waveguide width of other photonic waveguide resonators in the plurality. All waveguides in the plurality of photonic waveguide resonators have a common vertical thickness and are formed of a common photonic waveguide material. An optical input connection couples light into the waveguide resonators. A particle input conveys aerosol particles toward the waveguide resonators and an aerosol particle output conveys aerosol particles away from the waveguide resonators. At least one optical output connection is optically connected to accept light out of the plurality of photonic waveguide resonators to provide a signal indicative of at least one characteristic of the aerosol particles to be analyzed.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: November 23, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Robin Singh, Anuradha M. Agarwal, Danhao Ma, Peter X. Su, Brian W. Anthony
  • Patent number: 11067754
    Abstract: Optical interconnects can offer higher bandwidth, lower power, lower cost, and higher latency than electrical interconnects alone. The optical interconnect system enables both optical and electrical interconnection, leverages existing fabrication processes to facilitate package-level integration, and delivers high alignment tolerance and low coupling losses. The optical interconnect system provides connections between a photonics integrated chip (PIC) and a chip carrier and between the chip carrier and external circuitry. The system provides a single flip chip interconnection between external circuitry and a chip carrier using a ball grid array (BGA) infrastructure. The system uses graded index (GRIN) lenses and cross-taper waveguide couplers to optically couple components, delivers coupling losses of less than 0.5 dB with an alignment tolerance of ±1 ?m, and accommodates a 2.5× higher bandwidth density.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: July 20, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Lionel C. Kimerling, Jurgen Michel, Anuradha M. Agarwal, Kazumi Wada, Drew Michael Weninger, Samuel Serna
  • Publication number: 20210109290
    Abstract: Optical interconnects can offer higher bandwidth, lower power, lower cost, and higher latency than electrical interconnects alone. The optical interconnect system enables both optical and electrical interconnection, leverages existing fabrication processes to facilitate package-level integration, and delivers high alignment tolerance and low coupling losses. The optical interconnect system provides connections between a photonics integrated chip (PIC) and a chip carrier and between the chip carrier and external circuitry. The system provides a single flip chip interconnection between external circuitry and a chip carrier using a ball grid array (BGA) infrastructure. The system uses graded index (GRIN) lenses and cross-taper waveguide couplers to optically couple components, delivers coupling losses of less than 0.5 dB with an alignment tolerance of ±1 ?m, and accommodates a 2.5× higher bandwidth density.
    Type: Application
    Filed: August 10, 2020
    Publication date: April 15, 2021
    Inventors: Lionel C. KIMERLING, Jurgen MICHEL, Anuradha M. AGARWAL, Kazumi WADA, Drew Michael Weninger, Samuel Serna
  • Publication number: 20200386718
    Abstract: A microscale photoacoustic sensor uses the detection of ultrasound waves generated by a sample in response to incident light absorption to perform photoacoustic spectroscopy, imaging, and microscopy. The microscale photoacoustic sensor, including components to excite a sample and detect ultrasound waves, may be integrated onto a single chip. The microscale photoacoustic sensor may excite a sample using a metasurface collimator. The metasurface collimator includes an array of diffraction grooves to collimate an excitation beam uniformly out of the plane of the sensor to create a wide and homogeneous beam spot. The microscale photoacoustic sensor may detect ultrasound waves using an optical photoacoustic transducer. The optical photoacoustic transducer includes a resonator on a mechanical membrane to detect ultrasound waves with high sensitivity. The microscale photoacoustic sensor may be used in applications such as deep-tissue neural imaging or microfluidic biological screening.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 10, 2020
    Inventors: Robin Singh, Anuradha M. AGARWAL, Brian Anthony
  • Patent number: 10852190
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: December 1, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Kita, Anuradha M. Agarwal
  • Publication number: 20200158651
    Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 ?m.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Eveline Postelnicu, Samarth Aggarwal, Kazumi WADA, Jurgen MICHEL, Lionel C. KIMERLING, Michelle L. Clark, Anuradha M. AGARWAL
  • Publication number: 20190331529
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Kita, Anuradha M. Agarwal
  • Patent number: 10386237
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 20, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Matthew Kita, Anuradha M. Agarwal
  • Publication number: 20190234850
    Abstract: A photonic aerosol particle sensor includes a plurality of photonic waveguide resonators each having a photonic waveguide disposed along a separate waveguide resonator path and each photonic waveguide having a lateral waveguide width different than the waveguide width of other photonic waveguide resonators in the plurality. All waveguides in the plurality of photonic waveguide resonators have a common vertical thickness and are formed of a common photonic waveguide material. An optical input connection couples light into the waveguide resonators. A particle input conveys aerosol particles toward the waveguide resonators and an aerosol particle output conveys aerosol particles away from the waveguide resonators. At least one optical output connection is optically connected to accept light out of the plurality of photonic waveguide resonators to provide a signal indicative of at least one characteristic of the aerosol particles to be analyzed.
    Type: Application
    Filed: January 25, 2019
    Publication date: August 1, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Robin Singh, Anuradha M. Agarwal, Danhao Ma, Peter X. Su, Brian W. Anthony
  • Publication number: 20180274981
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 27, 2018
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Matthew Kita, Anuradha M. Agarwal
  • Patent number: 10006809
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: June 26, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Matthew Kita, Anuradha M. Agarwal
  • Publication number: 20170227399
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 10, 2017
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Matthew Kita, Anuradha M. Agarwal
  • Patent number: 9110221
    Abstract: In a photonic waveguide, there is provided an undercladding layer and a waveguide core, having a cross-sectional height and width, that is disposed on the undercladding layer. The waveguide core comprises a waveguide core material having a thermo-optic coefficient. A refractive index tuning cladding layer is disposed on top of the waveguide core. The refractive index tuning cladding layer comprises a refractive index tuning cladding material having an adjustable refractive index and an absorption length at a refractive index tuning radiation wavelength. A thermo-optic coefficient compensation cladding layer is disposed on top of the refractive index tuning cladding layer. The thermo-optic coefficient compensation cladding layer comprises a thermo-optic coefficient compensation material having a thermo-optic coefficient that is of opposite sign to the thermo-optic coefficient of the waveguide core material.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: August 18, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Anuradha M. Agarwal, Antonio Canciamilla, Francesco Morichetti, Stefano Grillanda, Lionel C. Kimerling, Andrea Melloni, Jurgen Michel, Vivek Raghunathan, Vivek Singh
  • Publication number: 20130243383
    Abstract: In a photonic waveguide, there is provided an undercladding layer and a waveguide core, having a cross-sectional height and width, that is disposed on the undercladding layer. The waveguide core comprises a waveguide core material having a thermo-optic coefficient. A refractive index tuning cladding layer is disposed on top of the waveguide core. The refractive index tuning cladding layer comprises a refractive index tuning cladding material having an adjustable refractive index and an absorption length at a refractive index tuning radiation wavelength. A thermo-optic coefficient compensation cladding layer is disposed on top of the refractive index tuning cladding layer. The thermo-optic coefficient compensation cladding layer comprises a thermo-optic coefficient compensation material having a thermo-optic coefficient that is of opposite sign to the thermo-optic coefficient of the waveguide core material.
    Type: Application
    Filed: February 8, 2013
    Publication date: September 19, 2013
    Applicants: POLITECNICO DI MILANO, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Anuradha M. Agarwal, Antonio Canciamilla, Francesco Morichetti, Stefano Grillanda, Lionel C. Kimerling, Andrea Melloni, Jurgen Michel, Vivek Raghunathan, Vivek Singh