Patents by Inventor ANWAR HOSSAEN

ANWAR HOSSAEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10301410
    Abstract: A catalyst consisting essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRn Y3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-3. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 28, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 10287374
    Abstract: A method of reducing drag in a conduit. The method includes producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA) and introducing the UHMW C4-C30 ?-olefin polymer DRA into the conduit to reduce drag in the conduit. The catalyst consists essentially of at least one tertiary monophenyl amine selected from the group consisting of N,N-diethylaniline, N-ethyl-N-methylparatolylamine, N,N-dipropylaniline, N,N-diethylmesitylamine, and combinations thereof; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 14, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 9969826
    Abstract: A method of producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA). The method includes polymerizing in a reactor a first ?-olefin monomer in the presence of catalyst and hydrocarbon solvent to produce the DRA. The catalyst consists essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 15, 2018
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20180051110
    Abstract: A catalyst consisting essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRn Y3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-3. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 22, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20180030178
    Abstract: A method of reducing drag in a conduit. The method includes producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA) and introducing the UHMW C4-C30 ?-olefin polymer DRA into the conduit to reduce drag in the conduit. The catalyst consists essentially of at least one tertiary monophenyl amine selected from the group consisting of N,N-diethylaniline, N-ethyl-N-methylparatolylamine, N,N-dipropylaniline, N,N-diethylmesitylamine, and combinations thereof; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 1, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Patent number: 9834630
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having MAO tethered thereon. The catalyst is made by dehydroxylating silica, adding MAO dropwise to a slurry of the silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: December 5, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Muhammad Atiqullah, Mamdouh A. Al-Harthi, Siripon Anantawaraskul, Abdul-Hamid M. Emwas, Anwar Ul-Hamid, Anwar Hossaen
  • Publication number: 20170145130
    Abstract: A method of producing ultra high molecular weight (UHMW) C4-C30 ?-olefin drag reducing agent (DRA). The method includes polymerizing in a reactor a first ?-olefin monomer in the presence of catalyst and hydrocarbon solvent to produce the DRA. The catalyst consists essentially of at least one tertiary monophenyl amine having a formula R1R2N-aryl, where R1 and R2 are the same or different, and each is a hydrogen, an alkyl, or a cycloalkyl group, where at least one of R1 and R2 contain at least one carbon atom; at least one titanium halide having a formula TiXm, where m is from 2.5 to 4.0 and X is a halogen containing moiety; and at least one cocatalyst having a formula AlRnY3-n where R is a hydrocarbon radical, Y is a halogen or hydrogen, and n is 1-20. Further, the catalyst is absent of a carrier or support.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 25, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Muhammad Atiqullah, Abdel Salam Al-Sarkhi, Faisal Mohammed Al-Thenayan, Abdullah Raddad Al-Malki, Wei Xu, Anwar Hossaen
  • Publication number: 20150353658
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having nBuSnCl3 and MAO tethered thereon. The catalyst is made by dehydroxylating silica, forming a silica/toluene slurry, injecting nBuSnCl3 into the slurry, refluxing the silica/toluene/nBuSnCl3 slurry, adding MAO dropwise to a slurry of the nBuSnCl3-functionalized silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/nBuSnCl3-functionalized silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 10, 2015
    Inventors: MUHAMMAD ATIQULLAH, MAMDOUH A. AL-HARTHI, ABDUL-HAMID M. EMWAS, SIRIPON ANANTAWARASKUL, ANWAR UL-HAMID, ANWAR HOSSAEN
  • Publication number: 20150353659
    Abstract: The supported metallocene catalyst for olefin polymerization is (nBuCp)2ZrCl2 impregnated onto a silica support having MAO tethered thereon. The catalyst is made by dehydroxylating silica, adding MAO dropwise to a slurry of the silica in toluene, heating the mixture for several hours, reacting (nBuCp)2ZrCl2 in toluene solvent with the MAO/silica support, and drying the catalyst under vacuum. The catalyst may be used, e.g., to catalyze copolymerization of ethylene with 1-hexene.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 10, 2015
    Inventors: MUHAMMAD ATIQULLAH, MAMDOUH A. AL-HARTHI, SIRIPON ANANTAWARASKUL, ABDUL-HAMID M. EMWAS, ANWAR UL-HAMID, ANWAR HOSSAEN