Patents by Inventor Applied Materials, Inc.

Applied Materials, Inc. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130122687
    Abstract: Scribing apparatus are disclosed. In one aspect, a dual-stage scribing apparatus has a first stage adapted to receive a first substrate, a second stage adapted to receive a second substrate, and one or more lasers adapted to emit a laser beam towards the first stage and the second stage and adapted to scribe the substrates. Scribing can be undertaken on the first stage while an orientation process may take place on the other. In another aspect, as dual-laser scribing apparatus is disclosed. Electronic device processing systems and methods including scribing apparatus are described, as are numerous other aspects.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 16, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130122713
    Abstract: Embodiments described herein generally relate to methods for manufacturing flash memory devices. In one embodiment, a method for removing native oxides from a substrate is provided. The method includes transferring a substrate having an oxide layer disposed thereon into a first processing chamber, exposing the substrate to a plasma generated from a cleaning gas mixture, wherein the cleaning gas mixture comprises a hydrogen-containing gas and a fluorine-containing gas, heating the substrate to a temperature sufficient to remove the oxide layer from the substrate, transferring the substrate from the first processing chamber to a second processing chamber without breaking vacuum, and flowing a plasma containing substantially nitrogen-containing radicals into the second processing chamber to expose the substrate to nitrogen containing radicals.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130112667
    Abstract: Embodiments of the invention provide an apparatus including a substrate support, a source of laser radiation emitting laser radiation along an optical path, and an illumination optics disposed along the optical path. The illumination optics includes a set of slow-axis and fast-axis lenses. The apparatus further includes a homogenizer disposed between of the illumination optics and the substrate support along the optical path. The homogenizer includes a first and a second micro-optic lenslet arrays of cylindrical lenses, wherein the second micro-optic lenslet array of cylindrical lenses has a relatively larger lenslet pitch than that of the first micro-optic lenslet array of cylindrical lenses, and lenslet axes of the first micro-optic lenslet array and lenslet axes of the second micro-optic lenslet array are oriented along an axis that is parallel to a fast axis of the source of laser radiation.
    Type: Application
    Filed: October 10, 2012
    Publication date: May 9, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130115028
    Abstract: Substrate transport systems and robot apparatus are described. The systems are adapted to efficiently pick or place a substrate at a destination by independently rotating an upper arm, a forearm, and dual wrist members relative to each other and a base. Methods of operating the robot apparatus are provided, as are numerous other aspects.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 9, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130110435
    Abstract: Methods for calculating a self-bias on a substrate in a process chamber may include measuring a DC potential of a substrate disposed on a substrate support of a process chamber while providing a bias power from a power source to a cathode at a first frequency; measuring a voltage, current and phase shift at a matching network coupled to the power source while providing the bias power; calculating an effective impedance of the cathode by determining a linear relationship between a calculated voltage and the measured DC potential of the substrate; calculating a first linear coefficient and a second linear coefficient of the linear relationship between the calculated voltage and the measured DC potential of the substrate; and calculating a self bias on the substrate by utilizing the first linear coefficient, second linear coefficient, measured DC potential of the substrate, effective impedance, and measured phase shift.
    Type: Application
    Filed: October 9, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130105088
    Abstract: Apparatus for processing semiconductors are provided herein. In some embodiments, an apparatus for processing a substrate may include: a first ring disposed concentrically about a substrate support, the first ring configured to position a substrate atop the substrate support during processing; and a second ring disposed between the substrate support and the first ring, the second ring configured to provide a heat transfer path from the first ring to the substrate support.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130110263
    Abstract: A method and system for linking sensor data to metrology data and metrology data to sensor data is described herein. In one embodiment, a user selection of metrology data for a product is received, related process tool fault detection summary for the selected metrology data for the product is presented, a user selection of a process tool from the process tool fault detection summary is received, and related fault detection details for the selected process tool are presented.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130106286
    Abstract: A plasma processing apparatus may include a process chamber having an interior processing volume; a first RF coil to couple RF energy into the processing volume; a second RF coil to couple RF energy into the processing volume, the second RF coil disposed coaxially with respect to the first RF coil; and a third RF coil to couple RF energy into the processing volume, the third RF coil disposed coaxially with respect to the first RF coil, wherein when RF current flows through the each of the RF coils, either the RF current flows out-of-phase through at least one of the RF coils with respect to at least another of the RF coils, or the phase of the RF current may be selectively controlled to be in-phase or out-of-phase in at least one of the RF coils with respect to at least another of the RF coils.
    Type: Application
    Filed: October 12, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130105085
    Abstract: Apparatus for processing substrates are provided herein. In some embodiments, an apparatus includes a first conductive body disposed about a substrate support in the inner volume of a process chamber; a first conductive ring having an inner edge coupled to a first end of the second conductive body and having an outer edge disposed radially outward of the inner edge; a second conductive body coupled to the outer edge of the first conductive ring and having at least a portion disposed above the first conductive ring, wherein the first conductive ring and the at least a portion of the second conductive body partially define a first region above the first conductive ring; and a heater configured to heat the first conductive body, the second conductive body, and the first conductive ring.
    Type: Application
    Filed: October 9, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130105086
    Abstract: A plasma processing apparatus may include a process chamber having an interior processing volume, first, second and third RF coils disposed proximate the process chamber to couple RF energy into the processing volume, wherein the second RF coil disposed coaxially with respect to the first RF coil, and wherein the third RF coil disposed coaxially with respect to the first and second RF coils, at least one ferrite shield disposed proximate to at least one of the first, second or third RF coils, wherein the ferrite shield is configured to locally guide a magnetic field produced by an RF current flow through the first, second or third RF coils toward the process chamber, wherein the plasma processing apparatus is configured to control a phase of each RF current flow through each of the of the first, second or third RF coils.
    Type: Application
    Filed: October 22, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130107415
    Abstract: Embodiments of electrostatic chucks are provided herein. In some embodiments, an electrostatic chuck for supporting and retaining a substrate having a given width may include a dielectric member having a support surface configured to support a substrate having a given width; an electrode disposed within the dielectric member beneath the support surface and extending from a center of the dielectric member outward to an area beyond an outer periphery of the substrate as defined by the given width of the substrate; an RF power source coupled to the electrode; and a DC power source coupled to the electrode.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130109164
    Abstract: Embodiments described herein generally relate to methods for manufacturing flash memory devices. In one embodiment, the method includes generating a plasma comprising nitrogen-containing radicals in a remote plasma applicator, flowing the plasma comprising nitrogen-containing radicals into a processing region of the processing chamber where a semiconductor device is disposed, wherein the semiconductor device has a substrate comprising an oxide layer formed thereon, exposing an exposed surface of the oxide layer to the nitrogen-containing radicals, and incorporating nitrogen in the exposed surface of the oxide layer of the substrate.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 2, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130101241
    Abstract: A bushing assembly for supporting a substrate within a processing chamber is generally provided. In one aspect, the bushing assembly comprises a tubular body having an outer perimeter and an aperture extending therethrough, a first ring having a first inner edge, the first ring disposed in the aperture in an upper portion of the tubular body, and a second ring having a second inner edge, the second ring disposed in the aperture in a lower portion of the tubular body. In another aspect, the first inner edge has a first radius of curvature, and the second inner edge has a second radius of curvature. In another aspect, a first inner edge diameter, a second inner edge diameter, the first radius of curvature, and the second radius of curvature are selected such that a support pin extending through the aperture contacts the bushing assembly on at most two points.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 25, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130102109
    Abstract: Embodiments of the present invention generally provide improved processes and apparatus for removing passivation layers from a surface of photovoltaic cells and improving contact resistance in rear point contact photovoltaic cells. In one embodiment, a method of processing a solar cell substrate includes providing a substrate having a passivation layer deposited on a first surface of the substrate. The passivation layer is a layer stack comprising an aluminum oxide and a silicon nitride. The method also includes exposing the first surface of the substrate to an etchant, and heating the etchant to dissolve the aluminum oxide of the passivation layer on the first surface. The method may further include forming a metal containing layer on a second surface of the substrate that is opposite to the first surface.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 25, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130102110
    Abstract: The present invention generally includes an apparatus and process of forming a conductive layer on a surface of a host substrate, which can be directly used to form a portion of an electronic device. More specifically, one or more of the embodiments disclosed herein include a process of forming a conductive layer on a surface of a substrate using an electrospinning type deposition process. Embodiments of the conductive layer forming process described herein can be used to reduce the number of processing steps required to form the conductive layer, improve the electrical properties of the formed conductive layer and reduce the conductive layer formation process complexity over current state-of-the-art conductive layer formation techniques. Typical electronic device formation processes that can benefit from one or more of the embodiments described herein include, but are not limited to processes used to form solar cells, electronic visual display devices and touchscreen type technologies.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130102133
    Abstract: A method for fabricating a semiconductor layer within a plasma enhanced chemical vapor deposition (PECVD) apparatus. The PECVD apparatus includes a plurality of walls defining a processing region, a substrate support, a shadow frame, a gas distribution showerhead, a gas source in fluid communication with the gas distribution showerhead and the processing region, a radio frequency power source coupled to the gas distribution showerhead, and one or more VHF grounding straps electrically coupled to at least one of the plurality of walls. The VHF grounding straps provide a low-impedance current path between at least one of the plurality of walls and at least one of a shadow frame or the substrate support. The method further includes delivering a semiconductor precursor gas and a dopant precursor gas and delivering a very high frequency (VHF) power to generate a plasma to form a first layer on the one or more substrates.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20130098395
    Abstract: Methods, apparatus, and systems for cleaning a substrate are provided. In one aspect, a substrate is scrubbed using an acidic cleaning solution in a first scrubber, transferred to a second scrubber after scrubbing the substrate using the acidic cleaning solution, followed by scrubbing the substrate in the second scrubber using a basic cleaning solution. Numerous additional aspects are disclosed.
    Type: Application
    Filed: October 6, 2012
    Publication date: April 25, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, Inc.
  • Publication number: 20130092243
    Abstract: Methods and apparatus for in-situ calibration of a flow controller are provided herein. In some embodiments, a method of flowing a gas includes providing a flow controller configured to provide a first gas at a first value of a flow rate based on a calculated first relationship determined by using a standard gas; determining an actual first relationship between the flow rate and the setpoint for the first gas from a plurality of values of the flow rate of the first gas determined at a corresponding plurality of values of the setpoint of the flow controller, wherein each of the plurality of values of the flow rate is determined from flowing the first gas through the flow controller at corresponding ones of the plurality of values for the setpoint; and flowing the first gas at the first value of the flow rate based on the actual first relationship.
    Type: Application
    Filed: September 26, 2012
    Publication date: April 18, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130088809
    Abstract: Embodiments of an apparatus for controlling a temperature of an electrostatic chuck in a process chamber are provided herein. In some embodiments, the apparatus includes an electrostatic chuck disposed in a process chamber, the electrostatic chuck including a ceramic plate having a substrate supporting surface, and a cooling assembly including a plurality of cooling plates disposed below the electrostatic chuck to adjust the cooling capacity of the electrostatic chuck. In some embodiments, the plurality of cooling plates includes an inner cooling plate configured to control a temperature of a center portion of the electrostatic chuck, and an outer cooling plate configured to control a temperature of an outer portion of the electrostatic chuck. In some embodiments, the plurality of cooling plates includes an upper cooling plate that contacts a bottom surface of the electrostatic chuck, and a lower cooling plate which contacts a bottom surface of the upper cooling plate.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 11, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.
  • Publication number: 20130088808
    Abstract: Embodiments of electrostatic chucks are provided herein. In some embodiments, an electrostatic chuck for retaining a substrate includes a base plate, a ceramic plate, supported by the base plate, having a substrate supporting surface, a first plurality of electrodes disposed within the ceramic plate having a first polarity, and a second plurality of electrodes disposed within the ceramic plate have a second polarity opposite from the first polarity, wherein the first and second plurality of electrodes are independently controllable to provide a desired chucking power and frequency.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 11, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: APPLIED MATERIALS, INC.