Patents by Inventor Apurv U. Kamath

Apurv U. Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8346338
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 1, 2013
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 8332008
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 11, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Publication number: 20120296311
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20120283543
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Applicant: DexCom, Inc
    Inventors: James H. Brauker, Apurv U. Kamath, Paul V. Goode, Mark Brister
  • Patent number: 8292810
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 23, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 8290562
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, Victoria Carr-Brendel
  • Patent number: 8290561
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 8282549
    Abstract: A second numerical value 246 is shown, which is representative of a variation of the measured analyte value 242. The second numerical value is preferably determined from a variation analysis based on statistical, clinical, or physiological parameters, such as described in more detail elsewhere herein. In one embodiment, the second numerical value 246 is determined based on clinical risk (for example, weighted for the greatest possible clinical risk to a patient). In another embodiment, the second numerical representation 246 is an estimated analyte value extrapolated to compensate for a time lag, such as described in more detail elsewhere herein. In some alternative embodiments, the receiver displays a range of numerical analyte values that best represents the host's estimated analyte value (for example, +/?10%). In some embodiments, the range is weighted based on clinical risk to the patient.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 8285354
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Patent number: 8275437
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: September 25, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv U. Kamath, Paul V. Goode, Mark Brister
  • Publication number: 20120238852
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: April 30, 2012
    Publication date: September 20, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20120220979
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 30, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 8251906
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 28, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Publication number: 20120215461
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: DexCom, Inc.
    Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath, James P. Thrower
  • Publication number: 20120215201
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 23, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20120209098
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 16, 2012
    Applicant: DexCom, Inc.
    Inventors: Paul V. Goode, JR., James H. Brauker, Apurv U. Kamath, James P. Thrower
  • Publication number: 20120190953
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20120186581
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: DexCom,Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20120191063
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 8229535
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate displayable sensor information to a plurality of different types of display devices.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: July 24, 2012
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, John Michael Dobbles, Apurv U. Kamath, Beat Stadelmann, Deborah M. Ruppert, Nasser Salamati, Richard C. Yang