Patents by Inventor Aristos Aristidou

Aristos Aristidou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8304588
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 6, 2012
    Assignee: Gevo, Inc.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Patent number: 8283505
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 9, 2012
    Assignee: Gevo, Inc.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Patent number: 8273565
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: September 25, 2012
    Assignee: Gevo, Inc.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne Albert
  • Publication number: 20120129230
    Abstract: Cells of the species Issatchenkia orientalis and closely related yeast species are transformed with a vector to introduce an exogenous lactate dehydrogenase gene. The cells produce lactic acid efficiently and are resistant at low pH, high lactate titer conditions.
    Type: Application
    Filed: December 9, 2011
    Publication date: May 24, 2012
    Inventors: Pirkko Suominen, Aristos Aristidou, Merja Penttila, Marja Ilmen, Laura Ruohonen, Kari Koivuranta, Kevin Roberg-Perez
  • Publication number: 20120107890
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: GEVO, INC.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Publication number: 20120107891
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: GEVO, INC.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Patent number: 8158404
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 17, 2012
    Assignee: Gevo, Inc.
    Inventors: Doug Lies, Stephanie Porter-Scheinman, Julie Kelly, Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins
  • Patent number: 8153415
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 10, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Patent number: 8137953
    Abstract: Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: March 20, 2012
    Assignee: Cargill Inc.
    Inventors: Matthew Miller, Pirkko Suominen, Aristos Aristidou, Benjamin Matthew Hause, Pim Van Hoek, Catherine Asleson Dundon
  • Publication number: 20120064590
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicant: GENO, INC.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Patent number: 8133715
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: March 13, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20120045809
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms comprise isobutanol producing metabolic pathway with one or more isobutanol pathway enzymes localized in the mitochondria. In various embodiments described herein, the recombinant microorganisms may be Crabtree-negative yeast microorganisms, microorganisms of the Saccharomyces clade, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 23, 2012
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Peter Meinhold, Christopher Smith, Aristos Aristidou, Catherine Asleson Dundon, Jun Urano
  • Publication number: 20120040080
    Abstract: Methods for producing a biofuel precursor are provided. Also provided are biocatalysts that convert a feedstock to a biofuel precursor.
    Type: Application
    Filed: October 7, 2011
    Publication date: February 16, 2012
    Applicant: GEVO, INC.
    Inventors: Andrew C. Hawkins, David A. Glassner, Thomas Buelter, James Wade, Peter Meinhold, Matthew W. Peters, Patrick R. Gruber, William A. Evanko, Aristos A. Aristidou
  • Publication number: 20120034666
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Nfs1 proteins or homologs thereof and/or one or more polynucleotides encoding one or more Isd11 proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 9, 2012
    Applicant: GEVO, INC.
    Inventors: Andrew C. HAWKINS, Aristos Aristidou, Doug Lies, Lynne H. Albert
  • Publication number: 20120028322
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 2, 2012
    Applicant: GEVO, INC.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Publication number: 20120028323
    Abstract: The present invention provides recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Patent number: 8101808
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 24, 2012
    Assignee: GEVO, Inc.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins
  • Publication number: 20120015417
    Abstract: The present invention is directed to recombinant microorganisms comprising one or more dihydroxyacid dehydratase (DHAD)-requiring biosynthetic pathways and methods of using said recombinant microorganisms to produce beneficial metabolites derived from said DHAD-requiring biosynthetic pathways. In various aspects of the invention, the recombinant microorganisms may be engineered to overexpress one or more polynucleotides encoding one or more Aft proteins or homologs thereof. In some embodiments, the recombinant microorganisms may comprise a cytosolically localized DHAD enzyme. In additional embodiments, the recombinant microorganisms may comprise a mitochondrially localized DHAD enzyme.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 19, 2012
    Applicant: GEVO, INC.
    Inventors: Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins, Doug Lies, Lynne H. Albert
  • Patent number: 8097448
    Abstract: Cells of the species Issatchenkia orientalis and closely related yeast species are transformed with a vector to introduce an exogenous lactate dehydrogenase gene. The cells produce lactic acid efficiently and are resistant at low pH, high lactate titer conditions.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: January 17, 2012
    Assignee: Cargill Inc.
    Inventors: Pirkko Suominen, Aristos Aristidou, Merja Pentilla, Marja Ilmen, Laura Ruohonen, Kari Koivuranta, Kevin Roberg-Perez
  • Publication number: 20110318799
    Abstract: There is disclosed a method of producing isobutanol. In an embodiment, the method includes providing a microorganism transformed with an isobutanol producing pathway containing at least one exogenous gene. The microorganism is selected to produce isobutanol from a carbon source at a yield of at least 10 percent theoretical. The method includes cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until isobutanol is produced. The method includes recovering the isobutanol. In one embodiment, the microorganism is a yeast with a Crabtree-negative phenotype. In another embodiment, the microorganism is a yeast microorganism with a Crabtree-positive phenotype. There is disclosed a microorganism for producing isobutanol. In an embodiment, the microorganism includes an isobutanol producing pathway containing at least one exogenous gene, and is selected to produce a recoverable quantity of isobutanol from a carbon source at a yield of at least 10 percent theoretical.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos A. Aristidou, Catherine Asleson Dundon, Christopher Smith