Patents by Inventor Aritomo Yamaguchi

Aritomo Yamaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123654
    Abstract: Provided is a separation and recovery apparatus for continuously separating and recovering, from a resin mixture containing a resin containing a hydrolyzable polymer and a resin containing a nonhydrolyzable polymer, a hydrolytic component a of the hydrolyzable polymer A and the nonhydrolyzable polymer B, the apparatus including: a crushing unit that crushes the resin mixture a melting/discharging unit that melts a crushed product obtained by the crushing unit to form a fluid and discharges the fluid at a high pressure; and a hydrothermal reaction treatment unit that continuously subjects the fluid discharged from the melting/discharging unit to a hydrothermal reaction treatment, wherein, in the melting/discharging unit, the hydrolyzable polymer A is hydrolyzed, and the hydrolytic component a thereof is dissolved and transferred into water permeating a sintered alloy diaphragm, thereby separating the nonhydrolyzable polymer B.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 18, 2024
    Applicant: TOPPAN INC.
    Inventors: Masaru WATANABE, Aritomo YAMAGUCHI, Osamu SATO, Yuuma IRISA, Akira TAKAMA, Kousuke NISHIMURA, Hiroki KUJIRAOKA, Hideki MIYAZAKI, Keita AKIMOTO, Takuya TAKAHATA, Daisuke KUGIMOTO, Shingo KOUDA, Satoshi HAMURA, Takahiro IMAI, Yumiko OMORI, Manabu KAWA
  • Publication number: 20150160152
    Abstract: An electrode for superoxide anions characterized by comprising a conductive component and, superimposed on a surface thereof, a film resulting from electrolytic polymerization of a metal thiofurylporphyrin/axial ligand complex; and a sensor for measuring a superoxide anion concentration including the same. The electrode for superoxide anions, by virtue of not only the excellent performance of electrode provided with the metal porphyrin complex polymer film, but also the presence of the axial ligand, can prevent poisoning by a catalyst poison such as hydrogen peroxide. Accordingly, in any of in vitro or in vivo environments, this electrode for superoxide anions enables detection of superoxide anion radicals without suffering any influence from a catalyst poison such as hydrogen peroxide. Moreover, quantitative assay of superoxide anions can be performed by the use of this electrode for superoxide anion in combination with a counter electrode or a reference electrode.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 11, 2015
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Masuhide Ishikawa, Katsuya Eguchi, Tomohiro Kobayashi, Satoshi Tsutsui, Yuujirou Toyoda
  • Publication number: 20140061063
    Abstract: An electrode for active oxygen species comprising a conductive component with a polymer membrane of a metal porphyrin complex formed on the surface is disclosed. The electrode for active oxygen species can detect active oxygen species such as superoxide anion radicals, hydrogen peroxide, and .OH and other active radical species (NO, ONOO—, etc.) in any environment including in vivo environment as well as in vitro environment. The electrode thus can be used for specifying various diseases and examining active oxygen species in food or in water such as tap water and sewage water.
    Type: Application
    Filed: November 4, 2013
    Publication date: March 6, 2014
    Applicants: Makoto Yuasa, Hitoshi Takebayashi, Masahiko Abe
    Inventors: Makoto Yuasa, Masahiko Abe, Aritomo Yamaguchi, Asako Shiozawa, Masuhide Ishikawa, Katsuya Eguchi, Shigeru Kido
  • Publication number: 20120145562
    Abstract: An electrode for superoxide anions which contains a conductive component and, superimposed on a surface thereof, a film resulting from electrolytic polymerization of a metal thiofurylporphyrin/axial ligand complex; and a sensor for measuring a superoxide anion concentration including the same. The electrode for superoxide anions can prevent poisoning by a catalyst poison such as hydrogen peroxide. Accordingly, in any of in vitro or in vivo environments, this electrode for superoxide anions enables detection of superoxide anion radicals without suffering any influence from a catalyst poison such as hydrogen peroxide. Moreover, quantitative assay of superoxide anions can be performed with this electrode for superoxide anion in combination with a counter electrode or a reference electrode. Thus, this electrode for superoxide anions can find wide applicability in various fields.
    Type: Application
    Filed: October 11, 2011
    Publication date: June 14, 2012
    Applicant: Makoto Yuasa
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Masuhide Ishikawa, Katsuya Eguchi, Tomohiro Kobayashi, Satoshi Tsutsui, Yuujirou Toyoda
  • Publication number: 20120039987
    Abstract: A niosome having a metalloporphyrin complex embedded therein comprising a cationized metalloporphyrin complex and a niosome-forming substance. The niosome having a metalloporphyrin complex embedded therein has an SOD activity, can interact with superoxide anionic radicals (O2?.) as a target, and can reduce these radicals without fail. The niosome having a metalloporphyrin complex embedded therein can reach cells in living bodies such as cancer cells due to properties of a niosome. Therefore, the niosome having a metalloporphyrin complex embedded therein can exhibit an excellent effect of treating cancer by reducing O2?. in cancer cells. In addition, since the effect is selective, the niosome can be used as a novel anticancer agent without side effects. Moreover, the niosome having a metalloporphyrin complex embedded therein can be retained in the blood while exhibiting a superior antioxidation effect. The niosome can thus protect living bodies from hindrance brought about by active oxygen species.
    Type: Application
    Filed: July 14, 2011
    Publication date: February 16, 2012
    Applicant: Makoto YUASA
    Inventors: MAKOTO YUASA, KENICHI OYAIZU, ARITOMO YAMAGUCHI, YUKIHIRO HANYUU, KAZUNORI KASAHARA, MASAYASU KOMURO
  • Patent number: 8114803
    Abstract: This invention provides a catalyst material comprising a conductive material coated with a polynuclear complex molecule derived from at least two types of heteromonocyclic compounds and a catalyst metal coordinated to the coating layer of the polynuclear complex molecule, and a catalyst material comprising a conductive material coated with a polynuclear complex molecule derived from a heteromonocyclic compound and a catalyst metal, which is a composite of a noble metal and a transition metal, coordinated to the coating layer of the polynuclear complex molecule. Such catalyst material of the invention has excellent catalytic performance and serviceability as, for example, an electrode of fuel cells.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: February 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Hiroshi Ikkanda, Ken Tanaka, Yuichi Iai, Masakuni Yamamoto, Shigeru Kido, Hidetaka Nishikoori, Tetsuo Nagami, Naoko Iwata
  • Publication number: 20110315551
    Abstract: An electrode for active oxygen species comprising a conductive component with a polymer membrane of a metal porphyrin complex formed on the surface is disclosed. The electrode for active oxygen species can detect active oxygen species such as superoxide anion radicals, hydrogen peroxide, and .OH and other active radical species (NO, ONOO—, etc.) in any environment including in vivo environment as well as in vitro environment. The electrode thus can be used for specifying various diseases and examining active oxygen species in food or in water such as tap water and sewage water.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicants: Makoto YUASA, Hitoshi TAKEBAYASHI, Masahiko ABE
    Inventors: Makoto YUASA, Masahiko ABE, Aritomo Yamaguchi, Asako Shiozawa, Masuhide Ishikawa, Katsuya Eguchi, Shigeru Kido
  • Publication number: 20090048096
    Abstract: This invention provides a macrocyclic-organic-compound-based catalyst for reducing oxygen having high oxygen-reducing activity. This oxygen-reducing catalyst comprises a conductive support and, supported thereon, a porphyrin complex represented by formula (I): wherein Rs each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogen atom, an amino group, a hydroxyl group, a nitro group, a phenyl group, or a cyano group or adjacent Rs together form a methylene chain having 2 to 6 carbon atoms or aromatic ring; R's each independently represent a thienyl group; and M represents a metal atom selected from the group consisting of Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Au, Mg, Cd, Al, In, Ge, Cr, and Ti, provided that M may bind to a halogen atom, an oxygen atom, —OH, a nitrogen atom, NO, or ?CO.
    Type: Application
    Filed: May 10, 2006
    Publication date: February 19, 2009
    Inventors: Naoko Iwata, Tetsuo Nagami, Hidetaka Nishikoori, Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Mizuki Kitao, Takuya Imai, Shigeru Kido
  • Publication number: 20080289960
    Abstract: An electrode for superoxide anions characterized by comprising a conductive component and, superimposed on a surface thereof, a film resulting from electrolytic polymerization of a metal thiofurylporphyrin/axial ligand complex; and a sensor for measuring a superoxide anion concentration including the same. The electrode for superoxide anions, by virtue of not only the excellent performance of electrode provided with the metal porphyrin complex polymer film, but also the presence of the axial ligand, can prevent poisoning by a catalyst poison such as hydrogen peroxide. Accordingly, in any of in vitro or in vivo environments, this electrode for superoxide anions enables detection of superoxide anion radicals without suffering any influence from a catalyst poison such as hydrogen peroxide. Moreover, quantitative assay of superoxide anions can be performed by the use of this electrode for superoxide anion in combination with a counter electrode or a reference electrode.
    Type: Application
    Filed: March 12, 2004
    Publication date: November 27, 2008
    Applicant: Makoto Yuasa
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Masuhide Ishikawa, Katsuya Eguchi, Tomohiro Kobayashi, Satoshi Tsutsui, Yuujirou Toyoda
  • Publication number: 20080269184
    Abstract: A niosome having a metalloporphyrin complex embedded therein comprising a cationized metalloporphyrin complex and a niosome-forming substance. The niosome having a metalloporphyrin complex embedded therein has an SOD activity, can interact with superoxide anionic radicals (O2?.) as a target, and can reduce these radicals without fail. The niosome having a metalloporphyrin complex embedded therein can reach cells in living bodies such as cancer cells due to properties of a niosome. Therefore, the niosome having a metalloporphyrin complex embedded therein can exhibit an excellent effect of treating cancer by reducing O2-. in cancer cells. In addition, since the effect is selective, the niosome can be used as a novel anticancer agent without side effects. Moreover, the niosome having a metalloporphyrin complex embedded therein can be retained in the blood while exhibiting a superior antioxidation effect. The niosome can thus protect living bodies from hindrance brought about by active oxygen species.
    Type: Application
    Filed: March 4, 2004
    Publication date: October 30, 2008
    Inventors: Makoto Yuasa, Kenichi Oyaizu, Aritomo Yamaguchi, Yukihiro Hanyuu, Kazunori Kasahara, Masayasu Komuro
  • Publication number: 20050077192
    Abstract: An electrode for active oxygen species comprising a conductive component with a polymer membrane of a metal porphyrin complex formed on the surface is disclosed. The electrode for active oxygen species can detect active oxygen species such as superoxide anion radicals, hydrogen peroxide, and .OH and other active radical species (NO, ONOO—, etc.) in any environment including in vivo environment as well as in vitro environment. The electrode thus can be used for specifying various diseases and examining active oxygen species in food or in water such as tap water and sewage water.
    Type: Application
    Filed: December 19, 2002
    Publication date: April 14, 2005
    Applicant: makoto yuasa
    Inventors: Makoto Yuasa, Masahiko Abe, Aritomo Yamaguchi, Asako Shiozawa, Masuhide Ishikawa, Katsuya Eguchi, Shigeru Kido
  • Publication number: 20050008687
    Abstract: An metalloporphyrin-complex-embedded liposome, comprising a cationic metalloporphyrin complex and a lipid having liposome forming ability is disclosed. As metalloporphyrin-complex-embedded liposomes according to the present invention act on superoxide anion radicals (O2?), and can surely lower their concentration, they can exhibit superb effects for the treatment of cancers and have excellent characteristics as antioxidants.
    Type: Application
    Filed: March 1, 2004
    Publication date: January 13, 2005
    Applicant: Makoto Yuasa
    Inventors: Makoto Yuasa, Noriyoshi Matsukura, Aritomo Yamaguchi, Hiroyoshi Kawakami, Shoji Nagaoka, Masahiko Abe, Hitoshi Takebayashi, Aiko Horiuchi, Akihiko Ogata, Takeshi Sakaya