Patents by Inventor Armenag H. Dekmezian

Armenag H. Dekmezian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020128390
    Abstract: A thermoplastic elastomer formed by a process comprising the steps of dynamically vulcanizing a rubber within a mixture that includes the rubber, from about 10 to about 80 percent by weight of a thermoplastic resin based upon the total weight of the rubber and the thermoplastic combined, and from about 1 to about 25 percent by weight of a polymeric processing additive based upon the total weight of the rubber and the thermoplastic combined, where the polymeric processing additive is a linear polyolefin resin that has an melt flow rate that is greater than about 1,000 dg/min, a diene-modified polyolefin polymer that has an melt flow rate that is greater than about 1,000 dg/min, from about 0.005 to about 2.00 mole percent polymeric units deriving from dienes, and a viscosity average branching index that is from about 0.4 to about 0.
    Type: Application
    Filed: December 29, 2000
    Publication date: September 12, 2002
    Inventors: Maria D. Ellul, Paul E. McDaniel, Thomas L. Peltier, Jianya Cheng, Patrick Brant, Armenag H. Dekmezian
  • Patent number: 6428901
    Abstract: Disclosed are compositions comprising: a) an ethylene polymer component having a melting temperature greater than or equal to about 75° C., an ethylene crystallinity level of 5 weight percent or more, and a narrow compositional distribution; and b) a propylene polymer component having a melt flow rate of 500 dg/min. or more at 230° C. and a melting temperature greater than or equal to about 125° C. Further disclosed are films and articles made thereof.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: August 6, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pawan K. Agarwal, Armenag H. Dekmezian
  • Patent number: 6407171
    Abstract: Disclosed are compositions comprising: a) an ethylene polymer component having a melting temperature greater than or equal to about 75° C., an ethylene crystallinity level of 5 weight percent or more, and a narrow compositional distribution; and b) a propylene polymer component having a melt flow rate of 500 dg/min. or more at 230° C. and a melting temperature greater than or equal to about 125° C.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: June 18, 2002
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Pawan K. Agarwal, Armenag H. Dekmezian
  • Publication number: 20020013440
    Abstract: The co-polymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: January 31, 2002
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Publication number: 20010053837
    Abstract: The copolymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature (without the use of externally added nucleating agents) in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: December 20, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Patent number: 6225432
    Abstract: Branched polypropylene compositions which have improved melt strength and good processability are provided. The branched polypropylene compositions of the present invention have a polydispersity of less than 4.0 and a melt point greater than 90° C. Further, the weight average branching index g of the polypropylene compositions is less than 0.95. Additionally, a novel process is provided for efficiently producing a branched polypropylene composition comprising: a) contacting propylene monomers in a reactor with an inert hydrocarbon solvent or diluent and a catalyst composition comprising one or more single site catalyst compounds capable of producing stereospecific polypropylene at a temperature from about 40° C. to about 120° C., wherein the ratio in the reactor of the propylene monomers to the inert hydrocarbon solvent or diluent is less than 9.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: May 1, 2001
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Weiqing Weng, Eric J. Markel, Armenag H. Dekmezian, Palanisamy Arjunan