Patents by Inventor Armin Huseinovic

Armin Huseinovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11185717
    Abstract: The invention comprises a segmented rolling floor apparatus and method of use thereof, such as for use in a charged particle cancer therapy system. The segmented rolling floor comprises a first spool and a second spool, attached to opposite ends of the rolling floor, which cooperatively wind and unwind the rolling floor. The segmented rolling floor circumferentially surrounds a nozzle system penetrating through an aperture in the segmented rolling floor, where the nozzle system is used to deliver charged particles, from an accelerator, to a tumor of a patient. The rolling floor and nozzle systems move at respective rates maintaining the nozzle system in the aperture allowing for a safe/walkable floor while allowing treatment of the tumor as a gantry rotates the nozzle system and delivers protons to the tumor from positions above and below the floor.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 30, 2021
    Inventors: Jillian Reno, Armin Huseinovic, Mark R. Amato, Daniel J. Raymond, W. Davis Lee, Lou Wainwright, James P. Bennett
  • Publication number: 20210170199
    Abstract: The invention comprises a segmented rolling floor apparatus and method of use thereof, such as for use in a charged particle cancer therapy system. The segmented rolling floor comprises a first spool and a second spool, attached to opposite ends of the rolling floor, which cooperatively wind and unwind the rolling floor. The segmented rolling floor circumferentially surrounds a nozzle system penetrating through an aperture in the segmented rolling floor, where the nozzle system is used to deliver charged particles, from an accelerator, to a tumor of a patient. The rolling floor and nozzle systems move at respective rates maintaining the nozzle system in the aperture allowing for a safe/walkable floor while allowing treatment of the tumor as a gantry rotates the nozzle system and delivers protons to the tumor from positions above and below the floor.
    Type: Application
    Filed: June 6, 2019
    Publication date: June 10, 2021
    Inventors: Jillian Reno, Armin Huseinovic, Mark R. Amato, Daniel J. Raymond, W. Davis Lee, Lou Wainwright
  • Publication number: 20180056093
    Abstract: The invention comprises a segmented rolling floor apparatus and method of use thereof, such as for use in a charged particle cancer therapy system. The segmented rolling floor comprises a first spool and a second spool, attached to opposite ends of the rolling floor, which cooperatively wind and unwind the rolling floor. The segmented rolling floor circumferentially surrounds a nozzle system penetrating through an aperture in the segmented rolling floor, where the nozzle system is used to deliver charged particles, from an accelerator, to a tumor of a patient. The rolling floor and nozzle systems move at respective rates maintaining the nozzle system in the aperture allowing for a safe/walkable floor while allowing treatment of the tumor as a gantry rotates the nozzle system and delivers protons to the tumor from positions above and below the floor.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Jillian Reno, Armin Huseinovic, Mark R. Amato, Daniel J. Raymond, W. Davis Lee, Lou Wainwright
  • Patent number: 9607803
    Abstract: An ion implantation system has a process chamber having a process environment, and an ion implantation apparatus configured to implant ions into a workpiece supported by a chuck within the process chamber. A load lock chamber isolates the process (vacuum) environment from an atmospheric environment, wherein a load lock workpiece support supports the workpiece therein. An isolation chamber is coupled to the process chamber with a pre-implant cooling environment defined therein. An isolation gate valve selectively isolates the pre-implant cooling environment from the process environment wherein the isolation chamber comprises a pre-implant cooling workpiece support for supporting and cooling the workpiece. The isolation gate valve is the only access path for the workpiece to enter and exit the isolation chamber. A pressurized gas selectively pressurizes the pre-implant cooling environment to a pre-implant cooling pressure that is greater than the process pressure for expeditious cooling of the workpiece.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 28, 2017
    Assignee: AXCELIS TECHNOLOGIES, INC.
    Inventors: Armin Huseinovic, Joseph Ferrara, Brian Terry
  • Publication number: 20170040141
    Abstract: An ion implantation system has a process chamber having a process environment, and an ion implantation apparatus configured to implant ions into a workpiece supported by a chuck within the process chamber. A load lock chamber isolates the process (vacuum) environment from an atmospheric environment, wherein a load lock workpiece support supports the workpiece therein. An isolation chamber is coupled to the process chamber with a pre-implant cooling environment defined therein. An isolation gate valve selectively isolates the pre-implant cooling environment from the process environment wherein the isolation chamber comprises a pre-implant cooling workpiece support for supporting and cooling the workpiece. The isolation gate valve is the only access path for the workpiece to enter and exit the isolation chamber. A pressurized gas selectively pressurizes the pre-implant cooling environment to a pre-implant cooling pressure that is greater than the process pressure for expeditious cooling of the workpiece.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 9, 2017
    Inventors: Armin Huseinovic, Joseph Ferrara, Brian Terry
  • Patent number: 9378992
    Abstract: An ion implantation system has an ion implantation apparatus coupled to first and second dual load lock assemblies, each having a respective first and second chamber separated by a common wall. Each first chamber has a pre-heat apparatus configured to heat a workpiece to a first temperature. Each second chamber has a post-cool apparatus configured to cool the workpiece to a second temperature. A thermal chuck retains the workpiece in a process chamber for ion implantation, and the thermal chuck is configured to heat the workpiece to a third temperature. A pump and vent are in selective fluid communication with the first and second chambers.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: June 28, 2016
    Assignee: Axcelis Technologies, Inc.
    Inventors: Armin Huseinovic, Joseph Ferrara, Brian Terry
  • Publication number: 20150380285
    Abstract: An ion implantation system has an ion implantation apparatus coupled to first and second dual load lock assemblies, each having a respective first and second chamber separated by a common wall. Each first chamber has a pre-heat apparatus configured to heat a workpiece to a first temperature. Each second chamber has a post-cool apparatus configured to cool the workpiece to a second temperature. A thermal chuck retains the workpiece in a process chamber for ion implantation, and the thermal chuck is configured to heat the workpiece to a third temperature. A pump and vent are in selective fluid communication with the first and second chambers.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Armin Huseinovic, Joseph Ferrara, Brian Terry
  • Patent number: 9129778
    Abstract: A fluid distribution member assembly for use in a substrate processing system includes a fluid distribution member having a central portion and a perimeter portion. The fluid distribution member defines at least one slot formed there-through and the at least one slot extends along a non-radial path configured to allow the central portion to expand and rotate with respect to the perimeter portion.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 8, 2015
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Armin Huseinovic, Ivan L. Berry
  • Publication number: 20130248113
    Abstract: Non-oxidizing plasma treatment devices for treating a semiconductor workpiece generally include a substantially non-oxidizing gas source; a plasma generating component in fluid communication with the non-oxidizing gas source; a process chamber in fluid communication with the plasma generating component, and an exhaust conduit centrally located in a bottom wall of the process chamber. In one embodiment, the process chamber is formed of an aluminum alloy containing less than 0.15% copper by weight; In other embodiments, the process chamber includes a coating of a non-copper containing material to prevent formation of copper hydride during processing with substantially non-oxidizing plasma. In still other embodiments, the process chamber walls are configured to be heated during plasma processing. Also disclosed are non-oxidizing plasma processes.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Lam Research Corporation
    Inventors: Phillip Geissbûhler, Ivan Berry, Armin Huseinovic, Shijian Luo, Aseem Kumar Srivastava, Carlo Waldfried
  • Publication number: 20120237696
    Abstract: A fluid distribution member assembly for use in a substrate processing system includes a fluid distribution member having a central portion and a perimeter portion. The fluid distribution member defines at least one slot formed there-through and the at least one slot extends along a non-radial path configured to allow the central portion to expand and rotate with respect to the perimeter portion.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 20, 2012
    Applicant: AXCELIS TECHNOLOGIES, INC.
    Inventors: ARMIN HUSEINOVIC, IVAN L. BERRY
  • Publication number: 20110180097
    Abstract: An apparatus for treating a workpiece, the apparatus comprising a first chamber configured to treat the workpiece at an elevated temperature, the first chamber including an opening for receiving the workpiece; a second chamber in operative communication with the first chamber, the second chamber including an opening for transferring the workpiece to and from the first chamber, wherein the first chamber opening is aligned with the second chamber opening, and wherein a selected one of the first and the second chambers comprises a gate valve configured to selectively open and close access to the first and second chamber openings; and a thermal isolation plate formed of a material effective to substantially prevent heat transfer from the first chamber to the second chamber, wherein the thermal isolation plate is disposed about the first and second chamber openings in a sealing relationship.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: AXCELIS TECHNOLOGIES, INC.
    Inventors: Armin Huseinovic, Ivan L. Berry
  • Publication number: 20110136346
    Abstract: Non-oxidizing plasma treatment devices for treating a semiconductor workpiece generally include a substantially non-oxidizing gas source; a plasma generating component in fluid communication with the non-oxidizing gas source; a process chamber in fluid communication with the plasma generating component, and an exhaust conduit centrally located in a bottom wall of the process chamber. In one embodiment, the process chamber is formed of an aluminum alloy containing less than 0.15% copper by weight; In other embodiments, the process chamber includes a coating of a non-copper containing material to prevent formation of copper hydride during processing with substantially non-oxidizing plasma. In still other embodiments, the process chamber walls are configured to be heated during plasma processing. Also disclosed are non-oxidizing plasma processes.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 9, 2011
    Applicant: AXCELIS TECHNOLOGIES, INC.
    Inventors: Phillip Geissbühler, Ivan Berry, Armin Huseinovic, Shijian Luo, Aseem Kumar Srivastava, Carlo Waldfried