Patents by Inventor Arni Steingrimsson

Arni Steingrimsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710539
    Abstract: A method is disclosed for predicting in advance whether a melanoma patient is likely to benefit from high dose IL2 therapy in treatment of the cancer. The method makes use of mass spectrometry data obtained from a blood-based sample of the patient and a computer configured as a classifier and making use of a reference set of mass spectral data obtained from a development set of blood-based samples from other melanoma patients. A variety of classifiers for making this prediction are disclosed, including a classifier developed from a set of blood-based samples obtained from melanoma patients treated with high dose IL2 as well as melanoma patients treated with an anti-PD-1 immunotherapy drug. The classifiers developed from anti-PD-1 and IL2 patient sample cohorts can also be used in combination to guide treatment of a melanoma patient.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 25, 2023
    Assignee: BIODESIX, INC.
    Inventors: Arni Steingrimsson, Carlos Oliveira, Krista Meyer, Joanna Röder, Heinrich Röder
  • Publication number: 20230197426
    Abstract: A method of predicting whether an MDS patient has a good or poor prognosis uses a general purpose computer configured as a classifier and mass-spectrometry data obtained from a blood-based sample. The classifier assigns a classification label of either Early or Late (or the equivalent) to the patient's sample. Patients classified as Early are predicted to have a poor prognosis or worse survival whereas those patients classified as Late are predicted to have a relatively better prognosis and longer survival time. The groupings demonstrated a large effect size between groups in Kaplan-Meier analysis of survival. Most importantly, while the classifications generated were correlated with other prognostic factors, such as IPSS score and genetic category, multivariate and subgroup analysis showed that they had significant independent prognostic power complementary to the existing prognostic factors.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Applicant: BIODESIX, INC.
    Inventors: Arni STEINGRIMSSON, Heinrich RODER, Joanna RODER
  • Patent number: 11621057
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 4, 2023
    Assignee: BIODESIX, INC.
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Patent number: 11594403
    Abstract: A method of predicting whether an MDS patient has a good or poor prognosis uses a general purpose computer configured as a classifier and mass-spectrometry data obtained from a blood-based sample. The classifier assigns a classification label of either Early or Late (or the equivalent) to the patient's sample. Patients classified as Early are predicted to have a poor prognosis or worse survival whereas those patients classified as Late are predicted to have a relatively better prognosis and longer survival time. The groupings demonstrated a large effect size between groups in Kaplan-Meier analysis of survival. Most importantly, while the classifications generated were correlated with other prognostic factors, such as IPSS score and genetic category, multivariate and subgroup analysis showed that they had significant independent prognostic power complementary to the existing prognostic factors.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 28, 2023
    Assignee: BIODESIX INC.
    Inventors: Arni Steingrimsson, Heinrich Röder, Joanna Röder
  • Publication number: 20220108771
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Application
    Filed: March 10, 2017
    Publication date: April 7, 2022
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Patent number: 10950348
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 16, 2021
    Assignee: BIODESIX, INC.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10713590
    Abstract: Classifier generation methods are described in which features used in classification (e.g., mass spectral peaks) are selected, or deselected using bagged filtering. A development sample set is split into two subsets, one of which is used as a training set the other of which is set aside. We define a classifier (e.g., K-nearest neighbor, decision tree, margin-based classifier or other) using the training subset and at least one of the features (or subsets of two or more features in combination). We apply the classifier to a subset of samples. A filter is applied to the performance of the classifier on the sample subset and the at least one feature is added to a “filtered feature list” if the classifier performance passes the filter. We do this for many different realizations of the separation of the development sample set into two subsets, and, for each realization, different features or sets of features in combination.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: July 14, 2020
    Assignee: BIODESIX, INC.
    Inventors: Heinrich Röder, Joanna Röder, Arni Steingrimsson, Carlos Oliveira
  • Publication number: 20190018929
    Abstract: A method is disclosed for predicting in advance whether a melanoma patient is likely to benefit from high dose IL2 therapy in treatment of the cancer. The method makes use of mass spectrometry data obtained from a blood-based sample of the patient and a computer configured as a classifier and making use of a reference set of mass spectral data obtained from a development set of blood-based samples from other melanoma patients. A variety of classifiers for making this prediction are disclosed, including a classifier developed from a set of blood-based samples obtained from melanoma patients treated with high dose IL2 as well as melanoma patients treated with an anti-PD-1 immunotherapy drug. The classifiers developed from anti-PD-1 and IL2 patient sample cohorts can also be used in combination to guide treatment of a melanoma patient.
    Type: Application
    Filed: January 18, 2017
    Publication date: January 17, 2019
    Inventors: Arni Steingrimsson, Carlos Oliveira, Krista Meyer, Joanna Röder, Heinrich Röder
  • Publication number: 20180277249
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10007766
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 26, 2018
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Publication number: 20170039345
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 9, 2017
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Publication number: 20160321561
    Abstract: Classifier generation methods are described in which features used in classification (e.g., mass spectral peaks) are selected, or deselected using bagged filtering. A development sample set is split into two subsets, one of which is used as a training set the other of which is set aside. We define a classifier (e.g., K-nearest neighbor, decision tree, margin-based classifier or other) using the training subset and at least one of the features (or subsets of two or more features in combination). We apply the classifier to a subset of samples. A filter is applied to the performance of the classifier on the sample subset and the at least one feature is added to a “filtered feature list” if the classifier performance passes the filter. We do this for many different realizations of the separation of the development sample set into two subsets, and, for each realization, different features or sets of features in combination.
    Type: Application
    Filed: April 5, 2016
    Publication date: November 3, 2016
    Inventors: Heinrich Röder, Joanna Röder, Arni Steingrimsson, Carlos Oliveira