Patents by Inventor Aroutin Khachaturian

Aroutin Khachaturian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097405
    Abstract: An integrated photonic architecture for coherent signal generation and processing. This architecture can enhance coherent transceiver performance for many applications, including remote sensing, LiDAR, high-speed data communication, and high performance computing.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 21, 2024
    Applicant: California Institute of Technology
    Inventors: Aroutin Khachaturian, David Baum, Seyed Ali Hajimiri
  • Publication number: 20240039638
    Abstract: A complex-wavefront photonic transceiver including a coherent source; a complex transmitter waveform generator programmable to modulate a first portion of the coherent electromagnetic radiation, when received from the coherent source, to form a complex waveform comprising at least a pre-distortion to compensate for, or an adaptive beamforming to determine, a distortion of the complex waveform caused by at least the transceiver or during transmission of the complex waveform to a receiver aperture, the receiver aperture outputting receiver signals in response thereto; and a transmitter aperture for transmitting the complex waveform when received from the complex transmitter waveform generator. The transceiver further includes a receiver processor programmable to determine a phase and amplitude of the complex waveform, when received on the receiver aperture, from a combination of the received signals with a second portion of the electromagnetic radiation.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 1, 2024
    Applicant: California Institute of Technology
    Inventors: Aroutin Khachaturian, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Patent number: 11855119
    Abstract: A method of fabricating a photonic device includes in part, forming a multitude of metal and dielectric layers over a semiconductor substrate to form a structure. The metal layers form a continuous metal trace that characterize an etch channel. At least one of the metal layers extends towards an exterior surface of the structure such that when the structure is exposed to a metal etch, the metal etch removes the metal from the exterior surface of the structure and flows through the etch channel to fully etch the metal layers. The metal etch leaves behind a dielectric structure characterizing a photonic device. The photonic device may be a suspended rib waveguide, a suspended channel waveguide, a grating coupler, an interlayer coupler, a photodetector, a phase modulator, an edge coupler, and the like. A photonics system may include one or more of such devices.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 26, 2023
    Assignee: California Institute of Technology
    Inventors: Craig E Ives, Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Publication number: 20230324551
    Abstract: An adaptive LiDAR includes, in part, a transmitter and a receiver. The transmitter includes, in part, an array of N radiators, and a transmitter control block adapted to control an aperture of the transmitter. The receiver includes, in part, an array of T receive elements, and a receiver control block adapted to control a scan rate and resolution of the receiver. M and T are integers greater than one.
    Type: Application
    Filed: March 28, 2023
    Publication date: October 12, 2023
    Inventors: Aroutin Khachaturian, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Patent number: 11757308
    Abstract: A wireless laser power transfer system includes, in part, a transmitter and a receiver that form a wireless link. The transmitter, includes, in part, a first communication system, at least a first source of laser beam, and a controller adapted to vary power and direction of the laser beam and further to modulate the laser beam. The receiver includes, in part, a communication system adapted to establish a wireless link with the first communication system, at least a first photo-voltaic cell, and a controller adapted to demodulate and detect the power of the modulated laser beam received by the first photo-voltaic cell from the first source of laser beam. The system optionally includes at least a second source of laser beam controlled by the transmitter controller. The system optionally further includes a second photo-voltaic cell. The transmitter controller is further adapted to cause the second laser beam to strike the second photo-voltaic cell.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: September 12, 2023
    Assignee: California Institute of Technology
    Inventors: Behrooz Abiri, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Publication number: 20230204988
    Abstract: An electro-optical includes, in part, a multitude of phase modulators each of which includes, in part, a p-type semiconductor region, an n-type semiconductor region, and a ?(2) insulating dielectric material disposed between the p-type and n-type semiconductor regions. The electro-optical device may be a phased array in which each phase modulator is associated with a different one of the transmitting elements of the phased array. The ?(2) insulating dielectric material may be an organic polymer. The electro-optical device may further include, in part, a multitude of sensors each associated with a different one of the phase modulators. Each sensor is adapted to receive a phase modulated signal generated by the sensor’s associated phase modulator. The electro-optical device may further include, in part, a multitude of amplitude modulators each associated with a different one of the multitude of phase modulators.
    Type: Application
    Filed: August 1, 2022
    Publication date: June 29, 2023
    Inventors: Aroutin Khachaturian, Seyed Mohammadreza Fatemi, Seyed Ali Hajimiri
  • Patent number: 11569912
    Abstract: An optical phased array, includes, in part, K beam processors each adapted to receive a different one of K optical signals and generate N optical signals in response. The difference between the phases of optical signals aLM and aL(M+1) is the same for all Ms, where M is an integer ranging from 1 to N?1 defining the signals generated by a beam processor, and L is an integer ranging from 1 to K defining the beam processor generating the K optical signals. The transmitter further includes, in part, a combiner adapted to receive the N×K optical signals from the K beam processors and combine the K optical signals from different ones of the K beam processors to generate N optical signals. The transmitter further includes, in part, N radiating elements each adapted to transmit one of the N optical signals.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 31, 2023
    Assignee: California Institute of Technology
    Inventors: Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Publication number: 20220400217
    Abstract: A coherent imaging system including a transmitter and a receiver. The transmitter includes a coherent source and a power splitter for splitting the electromagnetic radiation into a reference and a signal beam. The receiver includes an image forming device and an array of pixels. Each of the pixels include means for collecting at least a portion of the signal beam imaged on the pixel by an image forming device, as a collected signal; means for splitting the collected signal into a plurality of collected signals each having different phase shifts; means for mixing each of the collected signals with the reference beam so as to form a plurality of mixed signals; and means for detecting the mixed signals and outputting a plurality of output electrical signals in response to the mixed signals.
    Type: Application
    Filed: April 22, 2022
    Publication date: December 15, 2022
    Applicant: California Institute of Technology
    Inventors: Aroutin Khachaturian, Behrooz Abiri, Seyed Mohammadreza Fatemi, Seyed Ali Hajimiri
  • Patent number: 11456532
    Abstract: A phased array includes, in part, M×N photonic chips each of which includes, in part, an array of transmitters and an array of receivers. At least one of M and/or N is an integer greater than one. The transmitter arrays in each pair of adjacent photonics chips are spaced apart by a first distance and the receiver arrays in each pair of adjacent photonics chips are spaced apart by a second distance. The first and second distances are co-prime numbers. Optionally, at least a second subset of the M×N photonic chips is formed by rotating a first subset of the M×N photonic chips.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 27, 2022
    Assignee: California Institute of Technology
    Inventors: Aroutin Khachaturian, Seyed Ali Hajimiri, Behrooz Abiri, Seyed Mohammadreza Fatemi
  • Patent number: 11415822
    Abstract: An electro-optical includes, in part, a multitude of phase modulators each of which includes, in part, a p-type semiconductor region, an n-type semiconductor region, and a ?(2) insulating dielectric material disposed between the p-type and n-type semiconductor regions. The electro-optical device may be a phased array in which each phase modulator is associated with a different one of the transmitting elements of the phased array. The ?(2) insulating dielectric material may be an organic polymer. The electro-optical device may further include, in part, a multitude of sensors each associated with a different one of the phase modulators. Each sensor is adapted to receive a phase modulated signal generated by the sensor's associated phase modulator. The electro-optical device may further include, in part, a multitude of amplitude modulators each associated with a different one of the multitude of phase modulators.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: August 16, 2022
    Assignee: California Institute of Technology
    Inventors: Aroutin Khachaturian, Seyed Mohammadreza Fatemi, Seyed Ali Hajimiri
  • Patent number: 11336373
    Abstract: A co-prime transceiver attains higher fill factor, improved side-lobe rejection, and higher lateral resolution per given number of pixels. The co-prime transceiver includes in part, a transmitter array having a multitude of transmitting elements and a receiver array having a multitude of receiving elements. The distance between each pair of adjacent transmitting elements is a first integer multiple of the whole or fraction of the wavelength of the optical. The distance between each pair of adjacent receiving elements is a second integer multiple of the whole or fraction of the wavelength of the optical signal. The first and second integers are co-prime numbers with respect to one another. The transceiver is fully realizable in a standard planar photonics platform in which the spacing between the elements provides sufficient room for optical routing to inner elements.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: May 17, 2022
    Assignee: California Institute of Technology
    Inventors: Aroutin Khachaturian, Seyed Ali Hajimiri, Behrooz Abiri, Seyed Mohammadreza Fatemi
  • Patent number: 11245471
    Abstract: An optical phased array includes a first multitude of optical transmitting/receiving elements (elements) positioned along a periphery of a first circular path. The phased array may further include a second multitude of optical elements positioned along a periphery of a second circular path concentric with the first circular path, and a third multitude of optical elements positioned along a periphery of a third circular path concentric with the first and second circular paths. The second circular path has a radius that is longer than the radius of the first circular path but shorter than the radius of the third circular. The number of the second multitude of optical elements is greater than the number of the first multitude of optical elements by N elements, and the number of the third multitude of optical elements is greater than the number of the second multitude of optical elements by M elements.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 8, 2022
    Assignee: California Institute of Technology
    Inventors: Artsroun Darbinian, Seyed Ali Hajimiri, Aroutin Khachaturian, Seyed Mohammadreza Fatemi
  • Publication number: 20210409120
    Abstract: An optical phased array, includes, in part, K beam processors each adapted to receive a different one of K optical signals and generate N optical signals in response. The difference between the phases of optical signals aLM and aL(M+1) is the same for all Ms, where M is an integer ranging from 1 to N?1 defining the signals generated by a beam processor, and L is an integer ranging from 1 to K defining the beam processor generating the K optical signals. The transmitter further includes, in part, a combiner adapted to receive the N×K optical signals from the K beam processors and combine the K optical signals from different ones of the K beam processors to generate N optical signals. The transmitter further includes, in part, N radiating elements each adapted to transmit one of the N optical signals.
    Type: Application
    Filed: March 8, 2021
    Publication date: December 30, 2021
    Inventors: Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Publication number: 20210175276
    Abstract: A method of fabricating a photonic device includes in part, forming a multitude of metal and dielectric layers over a semiconductor substrate to form a structure. The metal layers form a continuous metal trace that characterize an etch channel. At least one of the metal layers extends towards an exterior surface of the structure such that when the structure is exposed to a metal etch, the metal etch removes the metal from the exterior surface of the structure and flows through the etch channel to fully etch the metal layers. The metal etch leaves behind a dielectric structure characterizing a photonic device. The photonic device may be a suspended rib waveguide, a suspended channel waveguide, a grating coupler, an interlayer coupler, a photodetector, a phase modulator, an edge coupler, and the like. A photonics system may include one or more of such devices.
    Type: Application
    Filed: September 30, 2020
    Publication date: June 10, 2021
    Inventors: Craig E Ives, Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Patent number: 10942273
    Abstract: An optical phased array (OPA) includes, in part, a multitude of phase control elements disposed along N rows and M columns forming an N×M array. The phase control elements disposed along ith row are coupled to ith row signal line and phase control elements disposed along jth column are coupled to jth column signal line. The OPA further includes, in part, a row select block having N switches each configured to couple one of the N rows of the phase control elements to a digital-to-analog converter (DAC) in response to a row select signal. The OPA further includes, in part, a column select block having M switches each configured to couple one of the M rows of the phase control elements to a ground terminal in response to a column select signal.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 9, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Behrooz Abiri, Seyed Ali Hajimiri
  • Patent number: 10944477
    Abstract: An optical phased array, includes, in part, K beam processors each adapted to receive a different one of K optical signals and generate N optical signals in response. The difference between the phases of optical signals aLM and aL(M+1) is the same for all Ms, where M is an integer ranging from 1 to N?1 defining the signals generated by a beam processor, and L is an integer ranging from 1 to K defining the beam processor generating the K optical signals. The transmitter further includes, in part, a combiner adapted to receive the N×K optical signals from the K beam processors and combine the K optical signals from different ones of the K beam processors to generate N optical signals. The transmitter further includes, in part, N radiating elements each adapted to transmit one of the N optical signals.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: March 9, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Patent number: 10838222
    Abstract: An optical phased array includes, in part, a multitude of receiving elements arranged along N rows and M columns, and a controller configured to activate a first subset of the receiving elements during a first time interval to capture first data representative of a first image of a target, to activate a second subset of the receiving elements during a second time interval to capture second data representative of a second image of the target, and to combine the first and second data to generate the image of the target. The first and second subsets may share common receiving elements. The controller may be further configured to compute an average of the first and second data to generate the image of the target. The first subset may represent a subset of the M columns.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 17, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aroutin Khachaturian, Seyed Mohammadreza Fatemi, Seyed Ali Hajimiri
  • Publication number: 20200227949
    Abstract: A wireless laser power transfer system includes, in part, a transmitter and a receiver that form a wireless link. The transmitter, includes, in part, a first communication system, at least a first source of laser beam, and a controller adapted to vary power and direction of the laser beam and further to modulate the laser beam. The receiver includes, in part, a communication system adapted to establish a wireless link with the first communication system, at least a first photo-voltaic cell, and a controller adapted to demodulate and detect the power of the modulated laser beam received by the first photo-voltaic cell from the first source of laser beam. The system optionally includes at least a second source of laser beam controlled by the transmitter controller. The system optionally further includes a second photo-voltaic cell. The transmitter controller is further adapted to cause the second laser beam to strike the second photo-voltaic cell.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 16, 2020
    Inventors: Behrooz Abiri, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Publication number: 20200099451
    Abstract: An optical phased array, includes, in part, K beam processors each adapted to receive a different one of K optical signals and generate N optical signals in response. The difference between the phases of optical signals aLM and aL(M+1) is the same for all Ms, where M is an integer ranging from 1 to N?1 defining the signals generated by a beam processor, and L is an integer ranging from 1 to K defining the beam processor generating the K optical signals. The transmitter further includes, in part, a combiner adapted to receive the N×K optical signals from the K beam processors and combine the K optical signals from different ones of the K beam processors to generate N optical signals. The transmitter further includes, in part, N radiating elements each adapted to transmit one of the N optical signals.
    Type: Application
    Filed: July 1, 2019
    Publication date: March 26, 2020
    Inventors: Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Patent number: 10598785
    Abstract: An image capture device includes, in part, N optical transmit antennas forming a first array, N phase modulators each associated with and adapted to control a phase of a different one of the transmit antennas, M optical receive antennas forming a second array, M phase modulators each associated with and adapted to control a phase of a different one of the receive antennas, and a controller adapted to control phases of the first and second plurality of phase modulators to capture an image of an object. The first and second arrays may be one-dimensional arrays positioned substantially orthogonal to one another. Optionally, the first array is a circular array of transmitters, and the second array is a one-dimensional array of receivers positioned in the same plane as that in which the circular array of the transmitters is disposed.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: March 24, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Parham Porsandeh Khial, Aroutin Khachaturian, Seyed Ali Hajimiri