Patents by Inventor Arthur E. Read, Jr.

Arthur E. Read, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5658653
    Abstract: The invention provides composites of organic polymeric compositions including a matrix of an organic polymer and a filler distributed throughout the matrix, the flier being present in the matrix substantially as separate particles, each about the fundamental particle size of the filler. The fillers are unique mixed metal hydroxide compositions that are obtainable in sub-micron size particles. These particles are layered and have a BET specific surface area in excess of about 100 m.sup.2 /g. An anion of the particulates is selected to be compatible with the organic polymer thereby providing ease of dispersion of the filler particles throughout the polymer matrix.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: August 19, 1997
    Assignee: The Dow Chemical Company
    Inventors: Clive P. Bosnyak, John L. Burba, III, Malcolm F. Finlayson, Arthur E. Read, Jr., Chai-Jing Chou
  • Patent number: 5418271
    Abstract: Coating formulations which behave as elastic solids having reversible stress-induced fluidity are prepared by creating a fluid having distributed therein effective amounts of ionic charge sites and countercharge sites. For instance, elastic solids having reversible stress-induced fluidity are prepared by combining liquid formulations with a dispersion of a small, but effective, amount of at least one crystalline mixed metal hydroxide conforming substantially to the formulaLi.sub.m D.sub.d T(OH).sub.(m+2d+3+n.multidot.a) (A.sup.n).sub.a .multidot.xH.sub.2 Owhere m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radical of valence n and a is the amount of A, where n is 1 or more, (m+2d+3+n.multidot.a) is equal to or greater than 3, (m+d) is greater than zero, and xH.sub.2 O represents excess waters of hydration, if any.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: May 23, 1995
    Assignee: The Dow Chemical Company
    Inventors: John L. Burba, III, Peter A. Doty, Christopher P. Christenson, Susan K. Falcone, Andrea H. Hazlitt, Thomas M. Knobel, Wilfred C. Meyer, Arthur E. Read, Jr., Edgar F. Hoy, Avis L. McCrary, Ha Q. Pham, Stanley F. Simpson, Steve A. Sims, Betty J. Smith
  • Patent number: 5232627
    Abstract: Adducts of clay, especially of the smectite variety, most especially bentonite, are prepared with an effective amount of at least one activated mixed metal oxide or oxy-hydroxide (AHMMO) formed by dehydrating hydrotalcite or a mixture comprising magnesium oxide and aluminum oxide, or a crystalline mixed metal hydroxide conforming substantially to the formulaLi.sub.m D.sub.d T(OH).sub.(m+2d+3+n.a) (A.sup.n).sub.a. xH.sub.2 Owhere m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radical of valence n, where n is 1 or more, (m+2d+3+n.a) is equal to or greater than 3, (m+d) is greater than zero, and xH.sub.2 O represents excess waters of hydration. These adducts are useful, e.g., in drilling muds and in viscosity modification of a wide variety of fluids.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: August 3, 1993
    Assignee: The Dow Chemical Company
    Inventors: John L. Burba, III, Arthur E. Read, Jr., Edgar F. Hoy
  • Patent number: 5154932
    Abstract: Formulations or products are caused to be active antimicrobials by the addition thereto of at least one effective amount of at least one crystalline mixed metal hydroxide (MMOH) conforming substantially to the formulaLi.sub.m D.sub.d T(OH) (m+2d+3+na) (A.sup.n).sub.a.xH.sub.2 Owhere m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radical, (m+2d+3+na) is equal or to greater than 3, (m+d) is greater than zero, and xH.sub.2 O represents excess waters of hydration. The MMOH forms an adduct with, an coats, the microbes, thereby deactivating the microbes.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: October 13, 1992
    Assignee: The Dow Chemical Company
    Inventors: John L. Burba, III, John L. Alexander, Arthur E. Read, Jr., Wilfred W. Wilson
  • Patent number: 5015409
    Abstract: Aqueous-based functional products or corrosive products such as cleansers, household products, commercial products, and personal care products are thickened or viscosity-modified by the addition of at least a small, but effective, amount of at least one crystalline mixed metal hydroxide conforming substantially to the formulaLi.sub.m D.sub.d T(OH).sub.(m+2d+3+n.a) A.sub.a.sup.n.xH.sub.2 Owhere m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radial of valence n, where n is 1 or more, (m+2d+3+n.a) is equal to or greater than 3, (m+d) is greater than zero, and xH.sub.2 O represents excess waters of hydration.
    Type: Grant
    Filed: March 11, 1988
    Date of Patent: May 14, 1991
    Assignee: The Dow Chemical Company
    Inventors: Arthur E. Read, Jr., John L. Burba, III, Peter A. Doty, Clarence R. Crabb
  • Patent number: 4686314
    Abstract: A catalyst composition comprising a catalytic metal and a support, the support being prepared by depositing a metal alkoxide on a core support, then calcining the support.
    Type: Grant
    Filed: December 16, 1985
    Date of Patent: August 11, 1987
    Assignee: The Dow Chemical Company
    Inventors: Clayton D. Wood, Arthur E. Read, Jr.
  • Patent number: 4264435
    Abstract: Cracking of crude oil or crude oil residues is accomplished in an adiabatic reactor which follows a partial combustion zone with the injection of superheated or shift steam into the combustion gases.Advantages are that the carbon monoxide produced by partial combustion is converted to carbon dioxide which is easily removed, there is no need to supply a separate source of fuel or hydrogen, and coke formation is substantially eliminated. The cracked oil produced in the process can be used as a quench oil and/or fuel to feed the partial combustion zone. The yields of olefins and aromatics is increased over processes using superheated steam cracking.
    Type: Grant
    Filed: May 29, 1979
    Date of Patent: April 28, 1981
    Assignee: The Dow Chemical Company
    Inventors: Arthur E. Read, Jr., Milton S. Wing, William P. Hancock