Patents by Inventor Arthur J. HIGBY

Arthur J. HIGBY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11991277
    Abstract: Aspects include a cryptographic hardware security module having a secure embedded heat pipe and methods for assembling the same. The cryptographic hardware security module can include a printed circuit board having one or more components. The cryptographic hardware security module can further include an encapsulation structure having a top can and a bottom can. The top can is fixed to a first surface of the printed circuit board and the bottom can is fixed to second surface of the printed circuit board opposite the first surface. A heat pipe is positioned between the top can and the component. The heat pipe includes two or more 180-degree bends. A portion of the heat pipe extends beyond a secure region of the encapsulation structure.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: May 21, 2024
    Assignee: International Business Machines Corporation
    Inventors: Arthur J. Higby, David Clifford Long, Edward N. Cohen, John R. Dangler, Matthew Doyle, Philipp K. Buchling Rego, William Santiago-Fernandez, Levi Campbell, James Busby
  • Publication number: 20240121890
    Abstract: A structure of a circuitry substrate for securing an area from tampering is disclosed. The structure includes a circuitry substrate with at least one of a top tamper enclosure and a bottom tamper enclosure covering a component in a protected area of the circuitry substrate. The top and bottom tamper enclosures are adhesively bonded to a surface of the circuitry substrate, and a tear initiation site is added to a side of the perimeter of circuitry substrate bordering the protected area that includes at least one tamper enclosure, such that the tear initiation site is located and configured to enable propagation of a delamination of at least one internal layer of the circuitry substrate and a severing of a security circuit when a removal force is applied to the at least one of the top tamper enclosure and the bottom tamper enclosure.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 11, 2024
    Inventors: Arthur J. Higby, DAVID CLIFFORD LONG, James Busby, William Santiago-Fernandez, John R. Dangler, Russell A. Budd, Philipp K Buchling Rego, Hannah Wendling, Lauren Boston
  • Publication number: 20240098882
    Abstract: An electronic component includes a first trace configured to transmit a first signal and a second trace configured to transmit a second signal. The electronic component further includes a layer of conductive material separated from the first and second traces by a layer of insulative material. The electronic component further includes a first vertical wall formed in direct contact with the layer of conductive material. The electronic component further includes a second vertical wall formed in direct contact with the layer of conductive material. The second vertical wall is separated from the first vertical wall by a void, and the void extends between the first trace and the second trace.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Inventors: Matthew Doyle, DAVID CLIFFORD LONG, Matteo Cocchini, Russell A. Budd, James Busby, Roger S. Krabbenhoft, Arthur J. Higby
  • Patent number: 11822707
    Abstract: A tamper detection system may include organic material and a tamper detection circuit embedded in the organic material. A portion of the organic material is ablated away to form an incision in the organic material. A portion of the tamper detection circuit obstructs a fragment of the ablation path. The tamper detection circuit remains intact. The incision enables a gas flow between a first side of the organic material and a second side of the organic material.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: November 21, 2023
    Assignee: International Business Machines Corporation
    Inventors: William Santiago-Fernandez, Russell A. Budd, James Busby, Arthur J Higby, Michael Fisher, Silvio Dragone, Stefano Sergio Oggioni, David Clifford Long
  • Publication number: 20230320015
    Abstract: A latch assembly includes a lever arm affixed to a latch pivot point of rotation with a cam having a connecting slot. A load mechanism is configured to apply a force on the latch pivot point to retain the lever arm in a first position. The load mechanism is tuned to apply the force along a tolerance range of operation of the latch assembly.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Arthur J. Higby, Camillo Sassano, Christopher M. Marroquin, Brandon R. Christenson, Kevin O'Connell
  • Patent number: 11765816
    Abstract: Tamper-respondent assemblies are provided which include an enclosure mounted to a circuit board and enclosing one or more components to be protected within a secure volume. A tamper-respondent sensor covers, at least in part, an inner surface of the enclosure, and includes at least one tamper-detect circuit. A monitor circuit is disposed within the secure volume to monitor the tamper-detect circuit(s) for a tamper event. A pressure connector assembly is also disposed within the secure volume, between the tamper-respondent sensor and the circuit board. The pressure connector assembly includes a conductive pressure connector electrically connecting, at least in part, the monitor circuit and the tamper-detect circuit(s) of the tamper-respondent assembly, and a spring-biasing mechanism to facilitate breaking electrical connection of the conductive pressure connector to the tamper-detect circuit(s) with a tamper event.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 19, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Arthur J. Higby, William L. Brodsky, Levi Campbell, David Clifford Long, James Busby, Philipp K. Buchling Rego
  • Patent number: 11716808
    Abstract: Tamper-respondent assemblies are provided which include a circuit board, an enclosure assembly mounted to the circuit board, and a pressure sensor. The circuit board includes an electronic component, and the enclosure assembly is mounted to the circuit board to enclose the electronic component within a secure volume. The enclosure assembly includes a thermally conductive enclosure with a sealed inner compartment, and a porous heat transfer element within the sealed inner compartment. The porous heat transfer element is sized and located to facilitate conducting heat from the electronic component across the sealed inner compartment of the thermally conductive enclosure. The pressure sensor senses pressure within the sealed inner compartment of the thermally conductive enclosure to facilitate identifying a pressure change indicative of a tamper event.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: August 1, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hongqing Zhang, Arthur J. Higby, David J. Lewison, Philipp K. Buchling Rego, Jay A. Bunt, James Busby, Levi Campbell
  • Publication number: 20230054606
    Abstract: Aspects include a cryptographic hardware security module having a secure embedded heat pipe and methods for assembling the same. The cryptographic hardware security module can include a printed circuit board having one or more components. The cryptographic hardware security module can further include an encapsulation structure having a top can and a bottom can. The top can is fixed to a first surface of the printed circuit board and the bottom can is fixed to second surface of the printed circuit board opposite the first surface. A heat pipe is positioned between the top can and the component. The heat pipe includes two or more 180-degree bends. A portion of the heat pipe extends beyond a secure region of the encapsulation structure.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 23, 2023
    Inventors: Arthur J. Higby, DAVID CLIFFORD LONG, Edward N. Cohen, John R. Dangler, Matthew Doyle, Philipp K. Buchling Rego, William Santiago-Fernandez, Levi CAMPBELL, James Busby
  • Publication number: 20230052840
    Abstract: Tamper-respondent assemblies are provided which include an enclosure mounted to a circuit board and enclosing one or more components to be protected within a secure volume. A tamper-respondent sensor covers, at least in part, an inner surface of the enclosure, and includes at least one tamper-detect circuit. A monitor circuit is disposed within the secure volume to monitor the tamper-detect circuit(s) for a tamper event. A pressure connector assembly is also disposed within the secure volume, between the tamper-respondent sensor and the circuit board. The pressure connector assembly includes a conductive pressure connector electrically connecting, at least in part, the monitor circuit and the tamper-detect circuit(s) of the tamper-respondent assembly, and a spring-biasing mechanism to facilitate breaking electrical connection of the conductive pressure connector to the tamper-detect circuit(s) with a tamper event.
    Type: Application
    Filed: August 11, 2021
    Publication date: February 16, 2023
    Inventors: Arthur J. HIGBY, William L. BRODSKY, Levi CAMPBELL, David Clifford LONG, James BUSBY, Philipp K. BUCHLING REGO
  • Publication number: 20220382921
    Abstract: A tamper detection system may include organic material and a tamper detection circuit embedded in the organic material. A portion of the organic material is ablated away to form an incision in the organic material. A portion of the tamper detection circuit obstructs a fragment of the ablation path. The tamper detection circuit remains intact. The incision enables a gas flow between a first side of the organic material and a second side of the organic material.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: William Santiago-Fernandez, Russell A. Budd, James Busby, Arthur J Higby, MICHAEL FISHER, Silvio Dragone, Stefano Sergio Oggioni, DAVID CLIFFORD LONG
  • Patent number: 11382210
    Abstract: A uniform thickness flex circuit is taught that uses more than one dielectric layer. A first dielectric layer is more flexible and capable of reliably bending at a radius of curvature at which a second dielectric layer cannot be reliably bent. The second dielectric layer has at least one more desirable electrical characteristic than the first dielectric area, for example leakage. Use of the uniform thickness flex circuit to protect sensitive material in an electronic enclosure is also described.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: July 5, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John R. Dangler, Arthur J Higby, Philipp K Buchling Rego, David Clifford Long, James Busby, Matthew Doyle, Edward N. Cohen, Michael Fisher, William Santiago-Fernandez
  • Publication number: 20220201839
    Abstract: A uniform thickness flex circuit is taught that uses more than one dielectric layer. A first dielectric layer is more flexible and capable of reliably bending at a radius of curvature at which a second dielectric layer cannot be reliably bent. The second dielectric layer has at least one more desirable electrical characteristic than the first dielectric area, for example leakage. Use of the uniform thickness flex circuit to protect sensitive material in an electronic enclosure is also described.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Inventors: John R. Dangler, Arthur J. Higby, Philipp K. Buchling Rego, DAVID CLIFFORD LONG, James Busby, MATTHEW DOYLE, Edward N. Cohen, MICHAEL FISHER, William Santiago-Fernandez
  • Publication number: 20220192011
    Abstract: Tamper-respondent assemblies are provided which include a circuit board, an enclosure assembly mounted to the circuit board, and a pressure sensor. The circuit board includes an electronic component, and the enclosure assembly is mounted to the circuit board to enclose the electronic component within a secure volume. The enclosure assembly includes a thermally conductive enclosure with a sealed inner compartment, and a porous heat transfer element within the sealed inner compartment. The porous heat transfer element is sized and located to facilitate conducting heat from the electronic component across the sealed inner compartment of the thermally conductive enclosure. The pressure sensor senses pressure within the sealed inner compartment of the thermally conductive enclosure to facilitate identifying a pressure change indicative of a tamper event.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 16, 2022
    Inventors: Hongqing ZHANG, Arthur J. HIGBY, David J. LEWISON, Philipp K. BUCHLING REGO, Jay A. BUNT, James BUSBY, Levi CAMPBELL
  • Patent number: 11122682
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which utilize liquid crystal polymer layers in solid form. The tamper-respondent assemblies include a circuit board, and an enclosure assembly mounted to the circuit board to enclose one or more electronic components coupled to the circuit board within a secure volume. The assembly includes a tamper-respondent sensor that is a three-dimensional multilayer sensor structure, which includes multiple liquid crystal polymer layers, and at least one tamper-detect circuit. The at least one tamper-detect circuit includes one or more circuit lines in a tamper-detect pattern disposed on at least one liquid crystal polymer layer of the multiple liquid crystal polymer layers. Further, a monitor circuit is provided disposed within the secure volume to monitor the at least one tamper-detect circuit of the tamper-respondent sensor for a tamper event.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, John R. Dangler, Mark K. Hoffmeyer, William L. Brodsky, William Santiago-Fernandez, David C. Long, Silvio Dragone, Michael J. Fisher, Arthur J. Higby
  • Patent number: 10798816
    Abstract: Tamper-respondent assemblies are provided which include an enclosure with an edge surface, and a tamper-respondent sensor. The tamper-respondent sensor covers, at least in part, the edge surface and an inner surface of the enclosure. The sensor includes at least one tamper-detect circuit. The tamper-detect circuit(s) includes a conductive trace(s) in a tamper-detect pattern. The tamper-respondent sensor includes exposed regions and unexposed regions of the conductive trace(s) at the edge surface of the enclosure to facilitate an adhesive directly contacting the at least one conductive trace in the exposed regions.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: October 6, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Arthur J. Higby, David C. Long, Michael J. Fisher, Russell A. Budd, Michel Turgeon, Sylvain Tetreault
  • Patent number: 10595401
    Abstract: Tamper-respondent assemblies are provided which include an enclosure assembly mounted to a circuit board and enclosing an electronic component(s) within a secure volume. The enclosure assembly includes an enclosure with an edge surface coupled to the circuit board, and a tamper-respondent sensor. The tamper-respondent sensor covers the edge surface and an inner surface of the enclosure. The sensor includes multiple layers, and at least one tamper-detect circuit. The tamper-detect circuit(s) includes a conductive trace(s) in a tamper-detect pattern covered, at least in part, by at least one layer of the multiple layers. The at least one layer is partially removed to provide exposed regions and unexposed regions of the conductive trace(s) at the edge surface of the enclosure. The conductive trace(s) is contacted where exposed by an adhesive securing the sensor to the circuit board. A monitor circuit monitors the tamper-detect circuit(s) for a tamper event.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Arthur J. Higby, David C. Long, Michael J. Fisher, Russell A. Budd, Michel Turgeon, Sylvain Tetreault
  • Publication number: 20190313526
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which utilize liquid crystal polymer layers in solid form. The tamper-respondent assemblies include a circuit board, and an enclosure assembly mounted to the circuit board to enclose one or more electronic components coupled to the circuit board within a secure volume. The assembly includes a tamper-respondent sensor that is a three-dimensional multilayer sensor structure, which includes multiple liquid crystal polymer layers, and at least one tamper-detect circuit. The at least one tamper-detect circuit includes one or more circuit lines in a tamper-detect pattern disposed on at least one liquid crystal polymer layer of the multiple liquid crystal polymer layers. Further, a monitor circuit is provided disposed within the secure volume to monitor the at least one tamper-detect circuit of the tamper-respondent sensor for a tamper event.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: James A. BUSBY, John R. DANGLER, Mark K. HOFFMEYER, William L. BRODSKY, William SANTIAGO-FERNANDEZ, David C. LONG, Silvio DRAGONE, Michael J. FISHER, Arthur J. HIGBY