Patents by Inventor Arthur Tauber

Arthur Tauber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7336981
    Abstract: Rare earth metal containing compounds of the formula Sr2YbSbO6 have been prepared with high critical temperature thin film superconductor structures, and can be fabricated into a superconductor insulator superconductor step edge Josephson junction, as well as being used in other ferroelectrics, pyroelectrics, and hybrid device structures.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: February 26, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 7312182
    Abstract: Rare earth metal containing compounds of the formula Sr2LuSbO6 and Sr2LaSbO6 have been prepared as high critical temperature thin film superconductor structures, and can be used in other ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: December 25, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 7306855
    Abstract: Rare earth metal containing compounds of the general formula Sr2RESbO6, wherein RE is a rare earth metal, have been prepared as dielectric substrates and buffer layers in thin film superconductor structures, and can be used in other ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: December 11, 2007
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 7192661
    Abstract: Rare earth metal containing compounds of the formula Sr2LuSbO6 have been prepared with high critical temperature thin film superconductor structures, and can be fabricated into an antenna, as well as being used in other ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: March 20, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 7087186
    Abstract: Single-phase, non-cubic and single-phase, cubic ferroelectric/paraelectric perovskite-structured materials having reasonably low and fairly temperature insensitive dielectric constants (stable dielectric constants over a wide range of operating temperatures of ?80° C. to 100° C.), reasonable loss tangents (<˜10?1), high tunability, and significantly lowered Curie temperature below the temperature range of operation for previous undoped perovskite structures are provided. The FE/PE materials of the present invention have dilute charge-compensated substitutions in the Ti site of the perovskite structure. This single-phase structure or a variant of it with a Ti rich composition, provided herein, allows for pulsed-laser-deposition of a thin film with uniform transfer of the structure of the target into the deposited film, which enables production of very small, lightweight devices that are extremely efficient and consume little power.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: August 8, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven C. Tidrow, Daniel M. Potrepka, Arthur Tauber
  • Patent number: 6875369
    Abstract: Single-phase, non-cubic and single-phase, cubic ferroelectric/paraelectric lead-based perovskite-structured materials having reasonably low and fairly temperature insensitive dielectric constants (stable dielectric constants over a wide range of operating temperatures of ?80° C. to 100° C.), reasonable loss tangents (<˜10?1), high tunability, and significantly lowered Curie temperature below the temperature range of operation for previous undoped perovskite structures are provided. The FE/PE materials of the present invention have dilute charge-compensated substitutions in the Ti site of the perovskite structure. This single-phase structure or a variant of it with a Ti rich composition, provided herein, allows for pulsed-laser-deposition of a thin film with uniform transfer of the structure of the target into the deposited film, which enables production of very small, lightweight devices that are extremely efficient and consume little power.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: April 5, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven C. Tidrow, Daniel M. Potrepka, Arthur Tauber
  • Patent number: 6827915
    Abstract: Rare earth metal containing compounds of the general formula Sr2RESbO6, wherein RE is a rare earth metal, have been prepared with high critical temperature thin film superconductor strucutures, and can be used in other ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: December 7, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 6818144
    Abstract: Single-phase, non-cubic and single-phase, cubic ferroelectric/paraelectric materials comprising a charge compensated lead-based perovskite having the general formula ABO3 is provided, which has reasonably low and fairly temperature insensitive dielectric constants over operating temperatures of −80° C. to 100° C., reasonable loss tangents (<˜10−1), and high tunability. The FE/PE materials of the present invention have dilute charge-compensated substitutions in the Ti site of the perovskite structure.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: November 16, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven C. Tidrow, Daniel M. Potrepka, Arthur Tauber
  • Patent number: 6328942
    Abstract: Compounds of the general formula A4MeSb3O12 wherein A is either barium (Ba) or strontium (Sr) and Me is an alkali metal ion selected from the group consisting of lithium (Li), sodium (Na) and potassium (K) have been prepared and included in high critical temperature thin film superconductors, ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: December 11, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Steven C. Tidrow, William D. Wilber, Robert D. Finnegan
  • Patent number: 6275716
    Abstract: Compounds of the of the general formula La3−zMezBa3Ca1−vNcvCu7O16+x, wherein Me can be a rare earth metal or an alkaline metal ion selected from the group consisting of yttrium (Y), ytterbium (Yb), sodium (Na) and Nc can be a 2+ ion selected from the group consisting of magnesium (Mg) and cadmium (Cd) have been prepared as the HTSC in thin film superconductors. These compounds can be used as thin film high critical superconductors in thin film high critical temperature superconducting structures and antennas and in multilayered structures and devices such as Josephson junctions, broadband impedance transformers and both flux flow and field effect transistors TABLE 1 Properties of La3-zMezBa3Ca1-vCu7O16+x Compounds. Lattice Parameter (Å) Onset Compound c &agr; Tc (K.) La3Ba3CaCu7O16+x 11.650 3.865 72  11.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: August 14, 2001
    Inventors: Arthur Tauber, Steven C. Tidrow
  • Patent number: 6183715
    Abstract: The microwave properties of numerous perovskite antimonates like A2MeSbO6 where A=Ba or Sr, Me=a rare earth, Y, Sc, Ga, or In and A4MeSb3O12 where A=Ba or Sr and M=Li, Na or K were measured at 10 Ghz and 300 K. Using the microwave properties and lattice parameters of these materials, the Clausius-Mossotti relationship and a nonlinear regression fitting program, the polarizability of Sb5+ was investigated and determined to be 1.18±0.49 A3. This low polarizability and the low loss of antimonates in general indicate that Sb5+ is an excellent candidate for use as a constituent in the fabrication of low dielectric constant, low loss, lattice matching perovskite oxide microwave substrates.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: February 6, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven C. Tidrow, Arthur Tauber, William D. Wilber, Robert D. Finnegan
  • Patent number: 6117572
    Abstract: Compounds of the general formula Ca.sub.2 MeSbO.sub.6 where Me is a 3+ ion selected from the group consisting of aluminum (Al), scandium (Sc), indium (In), gallium (Ga), or a rare earth metal have been prepared and included as the substrate or barrier dielectric in high critical temperature thin film superconductors, ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: September 12, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven C. Tidrow, Arthur Tauber, William D. Wilber, Robert D. Finnegan
  • Patent number: 6084246
    Abstract: Compounds of the general formula A.sub.4 MeSb.sub.3 O.sub.12 wherein A is either barium (Ba) or strontium (Sr) and Me is an alkali metal ion selected from the group consisting of lithium (Li), sodium (Na) and potassium (K) have been prepared and included in high critical temperature thin film superconductors, ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: July 4, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Steven C. Tidrow, William D. Wilber, Robert D. Finnegan
  • Patent number: 6031440
    Abstract: In the preferred embodiment, a variable magnetic reluctor structure comprng an iron yoke having two opposing "U"-shaped bodies, magnetic flux sources formed by portions of the yoke, a magnetic flux path, a working space and a reluctor space is provided. A reluctor member comprising diamagnetic disks is inserted within the reluctor space decreasing the magnetic permeability of the magnetic flux path to a value lesser than that of air (1.0). The iron disks increase permeability, while either a Type I or a Type II superconducting disk or a combination of iron disks interspersed between Type II superconducting disks decreases permeability.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: February 29, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Herbert A. Leupold, Arthur Tauber
  • Patent number: 6011982
    Abstract: Compounds of the of the general formula La.sub.3-z Me.sub.z Ba.sub.3 Ca.sub.1-v Nc.sub.v Cu.sub.7 O.sub.16+x, wherein Me can be a rare earth metal or an alkaline metal ion selected from the group consisting of yttrium (Y), ytterbium (Yb), sodium (Na) and Nc can be a 2+ion selected from the group consisting of magnesium (Mg) and cadmium (Cd) have been prepared as the HTSC in thin film superconductors.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: January 4, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Steven C. Tidrow
  • Patent number: 5972845
    Abstract: Compounds of the of the general formula La.sub.3-z Me.sub.z Ba.sub.3 Ca.sub.1-v Nc.sub.v Cu.sub.7 O.sub.16+x, wherein Me can be a rare earth metal or an alkaline metal ion selected from the group consisting of yttrium (Y), ytterbium (Yb), sodium (Na) and Nc can be a 2+ion selected from the group consisting of magnesium (Mg) and cadmium (Cd) have been prepared as the HTSC in thin film superconductors. These compounds can be used as thin film high critical superconductors in thin film high critical temperature superconducting structures and antennas and in multilayered structures and devices such as Josephson junctions, broadband impedance transformers and both flux flow and field effect transistors.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: October 26, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Steven C. Tidrow
  • Patent number: 5949316
    Abstract: In the preferred embodiment, a variable magnetic reluctor structure comprising an iron yoke having two opposing "U"-shaped bodies, magnetic flux sources formed by portions of the yoke, a magnetic flux path, a working space and a reluctor space is provided. A reluctor member comprising diamagnetic disks is inserted within the reluctor space decreasing the magnetic permeability of the magnetic flux path to a value lesser than that of air (1.0). The iron disks increase permeability, while either a Type I or a Type II superconducting disk or a combination of iron disks interspersed between Type II superconducting disks decreases permeability.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: September 7, 1999
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Herbert A. Leupold, Arthur Tauber
  • Patent number: 5814584
    Abstract: Compounds of the general formula A.sub.2 MeSbO.sub.6 wherein A is either barium (Ba) or strontium (Sr) and Me is a non-magnetic ion selected from the group consisting of scandium (Sc), indium (In) and gallium (Ga) have been prepared and included in high critical temperature thin film superconductor structures.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: September 29, 1998
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, William D. Wilber, Steven C. Tidrow, Robert D. Finnegan, Donald W. Eckart
  • Patent number: 5691279
    Abstract: c-axis oriented high temperature superconductors are deposited onto new compositions of garnets using pulsed laser deposition (PLD) with conditions of 85 mTorr of oxygen partial pressure; a block temperature of 730.degree. C., a substrate surface temperature of 790.degree. C. and a laser fluence of 1 to 2 Joules/cm.sup.2 at the target, a laser repetition rate of 10 Hz and a target to substrate distance of 7 cm and in which the a and b lattice parameters of the new compositions of garnets exhibit a mismatch of less than 7 percent with the a and b lattice parameters of the HTSC.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: November 25, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Steven C. Tidrow
  • Patent number: 5608282
    Abstract: A piezoelectrically controlled superconducting switch is provided for use in superconducting devices and piezoelectric devices. This switch includes a substrate, a superconductor which is bonded to the substrate, and a piezoelectric subassembly which has a load applicator and voltage source for straining the superconductor and for changing its superconductor curve of resistivity versus temperature.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: March 4, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: William D. Wilber, Ernest Potenziani, II, Steven C. Tidrow, Arthur Tauber, Donald W. Eckart