Patents by Inventor Arunava Majumdar

Arunava Majumdar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8950392
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Patent number: 8776870
    Abstract: Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: July 15, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chang, Arunava Majumdar, Alexander K. Zettl
  • Patent number: 8729381
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 20, 2014
    Assignee: The Regents of The University of California
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado
  • Patent number: 8538931
    Abstract: A computer-implementable method for protecting the integrity of dependent multi-tiered transactions is disclosed. The method includes a first application calling a transaction coordinator for the multi-tiered transaction, requesting initialization of a universal transaction context and the transaction coordinator starting a universal transaction composed of at least two component transactions by initializing the universal transaction context and returning a universal transaction identifier to the first application. The first application sending the universal transaction identifier to a second application, the second application committing a first transaction and a third application committing a second transaction depending on the first transaction. The integrity of the dependent transaction is protected by, in response to a failure of the second transaction, rolling back the second transaction and performing an atomic coordinated rollback of the first transaction.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventor: Arunava Majumdar
  • Patent number: 8222510
    Abstract: The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: July 17, 2012
    Assignee: The Regents of the University of California
    Inventors: Arunava Majumdar, Ramamoorthy Ramesh, Choongho Yu, Matthew L. Scullin, Mark Huijben
  • Publication number: 20120108450
    Abstract: The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4-dinitrotoluene (DNT).
    Type: Application
    Filed: October 13, 2009
    Publication date: May 3, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Justyn W. Jaworski, Seung-Wuk Lee, Arunava Majumdar, Digvijay A. Raorane
  • Publication number: 20110277747
    Abstract: A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release.
    Type: Application
    Filed: July 13, 2009
    Publication date: November 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: K. Peter C. Vollhardt, Rachel A. Segalman, Arunava Majumdar, Steven Meier
  • Publication number: 20110114145
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Application
    Filed: August 21, 2008
    Publication date: May 19, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado
  • Patent number: 7898005
    Abstract: Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 1, 2011
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Arunava Majumdar, Rong Fan, Rohit Karnik
  • Publication number: 20100167004
    Abstract: Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.
    Type: Application
    Filed: October 2, 2007
    Publication date: July 1, 2010
    Inventors: Chih-Wei Chang, Arunava Majumdar, Alexander K. Zettl
  • Publication number: 20100051079
    Abstract: The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.
    Type: Application
    Filed: August 11, 2009
    Publication date: March 4, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arunava Majumdar, Ramamoorthy Ramesh, Choongho Yu, Matthew L. Scullin, Mark Huijben
  • Publication number: 20100015526
    Abstract: The present invention provides for a metal-molecule heterostructure comprising (a) a plurality of metal, semimetallic or semiconducting nanoparticles, and (b) a plurality of electrically conductive organic molecules interspersed among the nanoparticles. The metal-molecular heterostructure is useful in a device, such as a thermoelectric energy converter, battery or capacitor.
    Type: Application
    Filed: August 10, 2009
    Publication date: January 21, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arunava Majumdar, Rachel A. Segalman, Pramod Reddy, Sung-Yeon Jang
  • Publication number: 20090283751
    Abstract: Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or biochemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    Type: Application
    Filed: December 15, 2008
    Publication date: November 19, 2009
    Inventors: Peidong Yang, Arunava Majumdar, Rong Fan, Rohit Karnik
  • Publication number: 20090277609
    Abstract: Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 12, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Chih-Wei Chang, Arunava Majumdar, Alexander K. Zettl
  • Patent number: 7512942
    Abstract: A method, system and computer program product is provided for deploying software in a data processing system. A topology pattern is selected in which the selected topology pattern describes an arrangement of software and hardware devices. Augments to the selected topology pattern are received to form an augmented topology pattern after a selection of a selected topology pattern from a plurality of topology patterns. The augmented topology pattern is transformed into a set of deployable scripts, wherein the set of deployable scripts is used for the software deployment.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kyle Gene Brown, Grant J. Larsen, Arunava Majumdar, Thomas Francis McElroy, Guruprasad Chitrapur Vasudeva
  • Patent number: 7496926
    Abstract: The present invention provides a method, apparatus, and computer usable code for constructing a queue namespace object having encapsulation of data stored in the queue namespace object. A series of steps may include receiving a request from a requesting program or other entity for a queue in a set of queues using a selected name. Upon getting the request, a processor may associate a selected name with a queue namespace object in a set of namespace objects. Further features may include processing requests for accessing the queues using the selected name and the queue namespace object in the set of namespace objects such that different applications may be assigned different queues in the set of queues, even though the selected name may be the same.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventor: Arunava Majumdar
  • Publication number: 20070255678
    Abstract: A computer-implementable method for protecting the integrity of dependent multi-tiered transactions is disclosed. The method includes a first application calling a transaction coordinator for the multi-tiered transaction, requesting initialization of a universal transaction context and the transaction coordinator starting a universal transaction composed of at least two component transactions by initializing the universal transaction context and returning a universal transaction identifier to the first application. The first application sending the universal transaction identifier to a second application, the second application committing a first transaction and a third application committing a second transaction depending on the first transaction. The integrity of the dependent transaction is protected by, in response to a failure of the second transaction, rolling back the second transaction and performing an atomic coordinated rollback of the first transaction.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Inventor: Arunava Majumdar
  • Publication number: 20070055972
    Abstract: A method, system and computer program product is provided for deploying software in a data processing system. A topology pattern is selected in which the selected topology pattern describes an arrangement of software and hardware devices. Augments to the selected topology pattern are received to form an augmented topology pattern after a selection of a selected topology pattern from a plurality of topology patterns. The augmented topology pattern is transformed into a set of deployable scripts, wherein the set of deployable scripts is used for the software deployment.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 8, 2007
    Applicant: International Business Machines Corporation
    Inventors: Kyle Brown, Grant Larsen, Arunava Majumdar, Thomas McElroy, Guruprasad Vasudeva
  • Publication number: 20070027928
    Abstract: The present invention provides a method, apparatus, and computer usable code for constructing a queue namespace object having encapsulation of data stored in the queue namespace object. A series of steps may include receiving a request from a requesting program or other entity for a queue in a set of queues using a selected name. Upon getting the request, a processor may associate a selected name with a queue namespace object in a set of namespace objects. Further features may include processing requests for accessing the queues using the selected name and the queue namespace object in the set of namespace objects such that different applications may be assigned different queues in the set of queues, even though the selected name may be the same.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Applicant: International Business Machines Corporation
    Inventor: Arunava Majumdar
  • Patent number: 5838005
    Abstract: Nanometer holes can be reliably and repeatedly defined in the tips of cantilevered probes and used in various types of scanning multiprobe microscopy by defining the hole within a layer disposed on the tip using focused electron or ion beams. The drilling of the hole on the apex of the tip and is stopped just as soon as the hole is defined through an overlying insulating layer under which lies a metallic or semiconductor layer at the apex. The hole is then backfilled with another metallic or semiconductor layer so that an active electrical junction is formed between the two layers through the hole in the insulating layer. The hole may be defined in conductive layers in various combinations with oxide layers, other metal layers and semiconductor materials to define Schottky diodes, thermocouple junctions, near-field optical detectors, and atomic force tips.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: November 17, 1998
    Assignee: The Regents of the University of California
    Inventors: Arunava Majumdar, Jie Lai, Ke Luo