Patents by Inventor Arvid E. Pasto

Arvid E. Pasto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230203684
    Abstract: Some embodiments of the present invention provide solid oxide cells and components thereof having a metal oxide electrolyte that exhibits enhanced ionic conductivity. Certain of those embodiments have two materials, at least one of which is a metal oxide, disposed so that at least some interfaces between the domains of the materials orient in a direction substantially parallel to the desired ionic conductivity.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 29, 2023
    Applicants: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Gerard M. Ludtka, Arvid E. Pasto
  • Patent number: 11560636
    Abstract: Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. That substrate may be in nanobar form that conforms to an orientation imparted by a magnetic field or an electric field applied before or during the converting. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 24, 2023
    Assignees: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Gerard M. Ludtka, Arvid E. Pasto
  • Publication number: 20200115811
    Abstract: Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. That substrate may be in nanobar form that conforms to an orientation imparted by a magnetic field or an electric field applied before or during the converting. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
    Type: Application
    Filed: July 8, 2019
    Publication date: April 16, 2020
    Applicants: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Gerard M. Ludtka, Arvid E. Pasto
  • Patent number: 10344389
    Abstract: Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: July 9, 2019
    Assignees: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Arvid E. Pasto
  • Publication number: 20180023205
    Abstract: Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
    Type: Application
    Filed: May 16, 2017
    Publication date: January 25, 2018
    Applicants: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Arvid E. Pasto
  • Publication number: 20160168734
    Abstract: Methods for forming a metal oxide electrolyte improve ionic conductivity. Some of those methods involve applying a first metal compound to a substrate, converting that metal compound to a metal oxide, applying a different metal compound to the metal oxide, and converting the different metal compound to form a second metal oxide. Electrolytes so formed can be used in solid oxide fuel cells, electrolyzers, and sensors, among other applications.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 16, 2016
    Applicants: FCET, INC., UT-Battelle, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Arvid E. Pasto
  • Publication number: 20130146469
    Abstract: Some embodiments of the present invention provide solid oxide cells and components thereof having a metal oxide electrolyte that exhibits enhanced ionic conductivity. Certain of those embodiments have two materials, at least one of which is a metal oxide, disposed so that at least some interfaces between the domains of the materials orient in a direction substantially parallel to the desired ionic conductivity.
    Type: Application
    Filed: February 9, 2011
    Publication date: June 13, 2013
    Applicants: UT-BATTELLE, LLC, C3 INTERNATIONAL, LLC
    Inventors: Leonid V. Budaragin, Mark A. Deininger, Michael M. Pozvonkov, D. Morgan Spears, II, Paul D. Fisher, Gerard M. Ludtka, Arvid E. Pasto
  • Patent number: 4542109
    Abstract: A silicon nitride-cordierite article, and process for fabricating is described. The silicon nitride imparts a high mechanical strength, and the cordierite contributes to a lower thermal conductivity making the composition especially useful for internal parts of a diesel engine. The mechanical strength can be increased by crystallizing the continuous cordierite glassy phase of the article. Crystallization of the continuous cordierite glassy phase is accomplished by the addition of a nucleating agent such as zirconium dioxide in the formulation and a subsequent reheating step after densification.
    Type: Grant
    Filed: August 9, 1983
    Date of Patent: September 17, 1985
    Assignee: GTE Laboratories Incorporated
    Inventor: Arvid E. Pasto
  • Patent number: 4231796
    Abstract: An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.
    Type: Grant
    Filed: November 28, 1978
    Date of Patent: November 4, 1980
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Grady W. Clark, John D. Holder, Arvid E. Pasto