Patents by Inventor Ashin George

Ashin George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921848
    Abstract: The disclosed embodiments relate to a system that characterizes susceptibility of an inferential model to follow signal degradation. During operation, the system receives a set of time-series signals associated with sensors in a monitored system during normal fault-free operation. Next, the system trains the inferential model using the set of time-series signals. The system then characterizes susceptibility of the inferential model to follow signal degradation. During this process, the system adds degradation to a signal in the set of time-series signals to produce a degraded signal. Next, the system uses the inferential model to perform prognostic-surveillance operations on the set of time-series signals with the degraded signal. Finally, the system characterizes susceptibility of the inferential model to follow degradation in the signal based on results of the prognostic-surveillance operations.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: March 5, 2024
    Assignee: Oracle International Corporation
    Inventors: Zexi Chen, Kenny C. Gross, Ashin George, Guang C. Wang
  • Patent number: 11412387
    Abstract: The disclosed embodiments relate to a system that camouflages EMI fingerprints in EMI emissions from a computing system to enhance system security. During operation, the system monitors the EMI emissions from the computer system during operation of the computer system to produce corresponding EMI signals. Next, the system determines a dynamic amplitude of the EMI emissions based on the EMI signals. If the dynamic amplitude of the EMI emissions drops below a threshold value, the system executes synthetic transactions, which have interarrival times that, when superimposed on a workload of the computer system, cause the computer system to produce randomized EMI emissions.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 9, 2022
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, Guang C. Wang
  • Publication number: 20220138090
    Abstract: A double-blind comparison is performed between prognostic-surveillance systems, which are located on a local system and a remote system. During operation, the local system inserts random faults into a dataset to produce a locally seeded dataset, wherein the random faults are inserted into random signals at random times with variable fault signatures. Next, the local system exchanges the locally seeded dataset with a remote system, and in return receives a remotely seeded dataset, which was produced by the remote system by inserting different random faults into the same dataset. Next, the local system uses a local prognostic-surveillance system to analyze the remotely seeded dataset to produce locally detected faults. Finally, the local system determines a performance of the local prognostic-surveillance system by comparing the locally detected faults against actual faults in the remotely seeded fault information. The remote system similarly determines a performance of a remote prognostic-surveillance system.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 5, 2022
    Applicant: Oracle International Corporation
    Inventors: Rui Zhong, Guang C. Wang, Kenny C. Gross, Ashin George, Zexi Chen
  • Publication number: 20220138316
    Abstract: The disclosed embodiments relate to a system that characterizes susceptibility of an inferential model to follow signal degradation. During operation, the system receives a set of time-series signals associated with sensors in a monitored system during normal fault-free operation. Next, the system trains the inferential model using the set of time-series signals. The system then characterizes susceptibility of the inferential model to follow signal degradation. During this process, the system adds degradation to a signal in the set of time-series signals to produce a degraded signal. Next, the system uses the inferential model to perform prognostic-surveillance operations on the set of time-series signals with the degraded signal. Finally, the system characterizes susceptibility of the inferential model to follow degradation in the signal based on results of the prognostic-surveillance operations.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 5, 2022
    Applicant: Oracle International Corporation
    Inventors: Zexi Chen, Kenny C. Gross, Ashin George, Guang C. Wang
  • Patent number: 11307569
    Abstract: The system receives a set of present time-series signals gathered from sensors in the asset. Next, the system uses an inferential model to generate estimated values for the set of present time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the set of present time-series signals to produce residuals. The system then performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms with associated tripping frequency (TF). While the TF exceeds a TF threshold, the system iteratively adjusts sensitivity parameters for the SPRT to reduce the TF, and performs the SPRT again on the residuals. The system then uses a logistic regression model to compute a risk index for the asset based on the TF. If the risk index exceeds a threshold, the system generates a notification indicating that the asset needs to be replaced.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 19, 2022
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, DeJun Li
  • Patent number: 11295012
    Abstract: The disclosed embodiments relate to a system that determines whether an inferential model is susceptible to spillover false alarms. During operation, the system receives a set of time-series signals from sensors in a monitored system. The system then trains the inferential model using the set of time-series signals. Next, the system tests the inferential model for susceptibility to spillover false alarms by performing the following operations for one signal at a time in the set of time-series signals. First, the system adds degradation to the signal to produce a degraded signal. The system then uses the inferential model to perform prognostic-surveillance operations on the time-series signals with the degraded signal. Finally, the system detects spillover false alarms based on results of the prognostic-surveillance operations.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: April 5, 2022
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George
  • Publication number: 20210235275
    Abstract: The disclosed embodiments relate to a system that camouflages EMI fingerprints in EMI emissions from a computing system to enhance system security. During operation, the system monitors the EMI emissions from the computer system during operation of the computer system to produce corresponding EMI signals. Next, the system determines a dynamic amplitude of the EMI emissions based on the EMI signals. If the dynamic amplitude of the EMI emissions drops below a threshold value, the system executes synthetic transactions, which have interarrival times that, when superimposed on a workload of the computer system, cause the computer system to produce randomized EMI emissions.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, Guang C. Wang
  • Patent number: 11012862
    Abstract: The disclosed embodiments relate to a system that camouflages electromagnetic interference (EMI) fingerprints in EMI emissions from a computing system to enhance system security. During operation, the system monitors the EMI emissions from the computer system while the computer system is operating to produce corresponding EMI signals. Next, the system performs a Fast Fourier Transform (FFT) operation on the EMI signals. The system then converts an output of the FFT operation into a frequency-domain representation of the EMI signals. Next, the system generates a camouflaging signal based on the frequency-domain representation of the EMI signals. Finally, the system outputs the camouflaging signal through a transmitter to camouflage EMI fingerprints in the EMI emissions from the computer system.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: May 18, 2021
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, Guang C. Wang
  • Publication number: 20200272140
    Abstract: The system receives a set of present time-series signals gathered from sensors in the asset. Next, the system uses an inferential model to generate estimated values for the set of present time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the set of present time-series signals to produce residuals. The system then performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms with associated tripping frequency (TF). While the TF exceeds a TF threshold, the system iteratively adjusts sensitivity parameters for the SPRT to reduce the TF, and performs the SPRT again on the residuals. The system then uses a logistic regression model to compute a risk index for the asset based on the TF. If the risk index exceeds a threshold, the system generates a notification indicating that the asset needs to be replaced.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, DeJun Li
  • Publication number: 20200245140
    Abstract: The disclosed embodiments relate to a system that camouflages electromagnetic interference (EMI) fingerprints in EMI emissions from a computing system to enhance system security. During operation, the system monitors the EMI emissions from the computer system while the computer system is operating to produce corresponding EMI signals. Next, the system performs a Fast Fourier Transform (FFT) operation on the EMI signals. The system then converts an output of the FFT operation into a frequency-domain representation of the EMI signals. Next, the system generates a camouflaging signal based on the frequency-domain representation of the EMI signals. Finally, the system outputs the camouflaging signal through a transmitter to camouflage EMI fingerprints in the EMI emissions from the computer system.
    Type: Application
    Filed: January 26, 2019
    Publication date: July 30, 2020
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George, Guang C. Wang
  • Publication number: 20200218801
    Abstract: The disclosed embodiments relate to a system that determines whether an inferential model is susceptible to spillover false alarms. During operation, the system receives a set of time-series signals from sensors in a monitored system. The system then trains the inferential model using the set of time-series signals. Next, the system tests the inferential model for susceptibility to spillover false alarms by performing the following operations for one signal at a time in the set of time-series signals. First, the system adds degradation to the signal to produce a degraded signal. The system then uses the inferential model to perform prognostic-surveillance operations on the time-series signals with the degraded signal. Finally, the system detects spillover false alarms based on results of the prognostic-surveillance operations.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Ashin George